The days of returning to the Moon and landing on Mars are approaching. These long-duration missions present significant challenges, such as changes in gravity, which pose serious threats to human health. Maintaining muscle function and health is essential for successful spaceflight and exploration of the Moon and Mars. This study aimed to observe the adaptation of rat hindlimb muscles to partial gravity conditions by simulating the gravity of space (microgravity (µG)), Moon (1/6G), and Mars (3/8G) using our recently invented ground-based apparatus. A total of 25 rats were included in this study. The rats were divided into five groups: control (1G), sham (1G), simulated Mars (3/8G), simulated Moon (1/6G), and simulated Space (µG). Muscle mass, fiber proportion, and fiber cross-sectional area (CSA) of four types of hindlimb muscles were measured: gastrocnemius (GA), tibialis anterior (TA), extensor digitorum longus (EDL), soleus (Sol). Sol and GA exhibited the most significant alterations in response to the changes in gravity after 10 days of the experiment. A notable decline in muscle mass was observed in the simulated µG, Moon, and Mars groups, with the µG group exhibiting the most noticeable decline. In Sol, a noteworthy decline in the proportion of slow-twitch type I fibers, CSA of slow-twitch type I fibers, and average CSA of the whole muscle fibers was observed in the simulated groups. The GA red, mixed, and white portions were examined, and the GA mixed portion showed significant differences in fiber proportion and CSA. A notable increase in the proportion of slow-twitch type I fibers was observed in the simulated groups, with a significant decrease in CSA of type IIb. In EDL or TA, no discernible changes in muscle mass, fiber proportion, or fiber CSA were observed in any of the five groups. These findings indicate that weight-bearing muscles, such as Sol and GA, are more sensitive to changes in partial gravity. Furthermore, partial gravity is insufficient to preserve the normal physiological and functional properties of the hindlimb muscles. Therefore, targeted muscle interventions are required to ensure astronauts' health and mission success. Furthermore, these findings demonstrate the viability and durability of our ground-based apparatus for partial gravity simulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lssr.2024.08.004 | DOI Listing |
Materials (Basel)
November 2024
Academic Department of Civil Construction (DACOC), Technological Federal University of Paraná (UTFPR), Curitiba 81280-340, PR, Brazil.
This manuscript evaluated the performance of silanes in cementitious matrices in the partial replacement of superplasticizers by silanes. For this, pastes with a water/cement ratio of 0.186 were produced and the superplasticizer admixture based on polycarboxylate esters was partially substituted by three types of silanes-vinyltriethoxysilane silanes (VTES), n-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAPTMS), and methacryloxypropyltrimethox-ysilane (MCPTMS)-in two substitutions levels (20% and 40%), and then tested in Portland cement pastes.
View Article and Find Full Text PDFWilderness Environ Med
November 2024
Department of Emergency Medicine, Baylor College of Medicine, Houston, TX, USA.
Introduction: Vital sign acquisition is a key component of modern medical care. In wilderness and space medical settings, vital sign acquisition can be a difficult process because of limitations on available personnel or lack of access to the patient. Camera-acquired vital signs could address each of these difficulties.
View Article and Find Full Text PDFPhys Med
December 2024
Division of Medical Physics, Department of Radiation Oncology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Germany.
Life Sci Space Res (Amst)
November 2024
Division of Biology, Gunma University Heavy Ion Medical Center, Maebashi, Gunma 371-8511, Japan. Electronic address:
The days of returning to the Moon and landing on Mars are approaching. These long-duration missions present significant challenges, such as changes in gravity, which pose serious threats to human health. Maintaining muscle function and health is essential for successful spaceflight and exploration of the Moon and Mars.
View Article and Find Full Text PDFNPJ Microgravity
October 2024
Microbiology Unit, Nuclear Medical Applications, Belgian Nuclear Research Center SCK CEN, Mol, Belgium.
Regenerative life support systems for space crews recycle waste into water, food, and oxygen using different organisms. The European Space Agency's MELiSSA program uses the cyanobacterium Limnospira indica PCC8005 for air revitalization and food production. Before space use, components' compatibility with reduced gravity was tested.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!