Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Microplastics are a novel pollutant that adversely affect freshwater benthic organisms. However, few studies have investigated the mechanism underlying the bioaccumulation and the toxicity of microplastics. In this study, microplastics bioaccumulation of wild Cipangopaludina chinensis in the Songhua River were utilized, and a 28-day aquatic toxicity test was performed to determine the effects of exposure to polyethylene terephthalate (PET), the bioaccumulation of PET, and changes in multiple biomarkers in the muscle, gill, and kidney tissues. The concentration pattern of microplastics was as follows: kidney tissue > muscle tissue > gill tissue. Microplastic ingestion caused AChE inhibition led to significant increases in redox and energy metabolism indicators. Furthermore, the IBR analysis presented a "response-resistance-breakdown" process, indicating that Cipangopaludina chinensis possessed resistance with time (D14 and D21) and concentration (0.10 mg/L and 1.00 mg/L) thresholds. Tissue sensitivity to microplastics was ranked as gill > muscle > kidney, which was the opposite order of microplastic accumulation. These findings implied that less sensitive tissues stored a larger amount of pollutants, suggesting a reduction in tissue sensitivity to microplastics with higher microplastic occurrence rates. This study provides new insights into biological resistance to pollutant stress, warranting further investigation into the underlying mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2024.107144 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!