The growing interest in using photodynamic therapy for cancer treatment and antimicrobial applications has prompted the search for different classes of dyes. In general, the protocols of these studies are different, making it difficult to compare their efficiency directly. Here, we apply a controlled protocol to analyze the photophysical properties of Erythrosin B, Eosin Y, and Rose Bengal using a set of optical techniques. The results show that Erythrosine has the best singlet oxygen generation capacity. This result, added to the well-known low toxicity of Erythrosine, makes it a good choice among the xanthenes for health applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2024.125345 | DOI Listing |
Nanomaterials (Basel)
December 2024
Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV-EHU, Apartado 644, 48080 Bilbao, Spain.
Antimicrobial resistance (AMR), a consequence of the ability of microorganisms, especially bacteria, to develop resistance against conventional antibiotics, hampering the treatment of common infections, is recognized as one of the most imperative health threats of this century. Antibacterial photodynamic therapy (aPDT) has emerged as a promising alternative strategy, utilizing photosensitizers activated by light to generate reactive oxygen species (ROS) that kill pathogens without inducing resistance. In this work, we synthesized silica nanoparticles (NPs) of different sizes (20 nm, 80 nm, and 250 nm) functionalized with the photosensitizer Rose Bengal (RB) and a gluconamide ligand, which targets Gram-negative bacteria, to assess their potential in aPDT.
View Article and Find Full Text PDFJ Org Chem
December 2024
Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India.
A Pd (II)-catalyzed direct C3-(sp)-H alkenylation of heteroarenes using benzothiazole as a directing group was successfully achieved. A wide range of 2--alkylpyrroles undergo an oxidative coupling with a variety of acrylates to furnish highly regio- and chemoselective E-alkenylation products at the C3 position. An important intermediate complex has been isolated and characterized so as to have an insight into the mechanism.
View Article and Find Full Text PDFDalton Trans
December 2024
Organometallics and Materials Chemistry Lab, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
Three 1-(anthracene-9-ylmethyl)-3-isopropyl-imidazol-2-thione Zn(II) halide complexes (1-3) and one 1-(anthracene-9-ylmethyl)-3-isopropyl-imidazol-2-selone Zn(II) dichloride complex (4) were synthesized and characterized. Complexes 2, 3, and 4 exhibited distorted tetrahedral geometries, while complex 1 adopted a regular tetrahedral geometry. All these complexes displayed emission in the crystalline state, with complex 3 emitting in the yellow region and complex 1 and 4 in the blue region, while complex 2 gave a bluish-green emission.
View Article and Find Full Text PDFChem Asian J
December 2024
Indian Institute of Science Education and Research Bhopal Department of Chemistry, Chemistry, Room No. 226, Academic Block - 2, Indore By-pass Road, Bhauri, 462066, Bhopal, INDIA.
A practical and efficient reaction for C2-selenylation of 1,4-naphthoquinones has been explored. This coupling reaction of two redox structural motifs, such as 2-bromo-1,4-naphthoquinone with diaryldiselenide / ebselen has been achieved by using sodium borohydride reducing agent at room temperature. Using this approach, several 2-selenylated-1,4-naphthoquinones were obtained in moderate to good yields and thoroughly characterized by multinuclear (1H, 13C, and 77Se) NMR, cyclic voltammetry, and mass spectrometry.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
October 2024
Department of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium.
Two new zinc(II) complexes, tri-ethyl-ammonium di-chlorido-[2-(4-nitro-phen-yl)-4-phenyl-quinolin-8-olato]zinc(II), (CHN){Zn(CHNO)Cl] (), and bis-(tri-ethyl-ammonium) {2,2'-[1,4-phenyl-enebis(nitrilo-methyl-idyne)]diphenolato}bis-[di-chlorido-zinc(II)], (CHN)[Zn(CHNO)Cl] (), were synthesized and their structures were determined using ESI-MS spectrometry, H NMR spectroscopy, and single-crystal X-ray diffraction. The results showed that the ligands 2-(4-nitro-phen-yl)-4-phenyl-quinolin-8-ol () and ,'-bis-(2-hy-droxy-benzyl-idene)benzene-1,4-di-amine () were deprotonated by tri-ethyl-amine, forming the counter-ion EtNH, which inter-acts an N-H⋯O hydrogen bond with the ligand. The Zn atoms have a distorted trigonal-pyramidal () and distorted tetra-hedral () geometries with a coord-ination number of four, coordinating with the ligands N and O atoms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!