A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Determination of ultrafine particle number emission factors from building materials in standardized conditions. | LitMetric

Determination of ultrafine particle number emission factors from building materials in standardized conditions.

Ann Work Expo Health

Center for Primary Care and Public Health Lausanne, Lausanne University, Route de la Corniche 2, 1066, Épalinges, Switzerland.

Published: November 2024

When comparing the particle emissivity for different materials and/or mechanical activities, a serious methodological issue emerges due to the dynamic nature of solid aerosols. Particle size distribution and concentration depend on initial particle emission that constantly evolves due to aerodynamic collisions. In this context, we propose a methodological approach and an experimental setup that enables to assess the release of fine/ultra-fine particles maintaining a steady-state inhalable mass concentration, here chosen at the Swiss occupational exposure level value for biopersistent granular particles (OEL: 10 mg/m3) in a controlled ventilation chamber. As a case study, this methodological protocol was tested in the occupational exposure scenario in which a series of insulating materials based on silica aerogel and conventional mortar and concrete were subjected to handling or sawing. Once the OEL was reached, the particle size distribution and morphology of the aerosols were characterized using direct reading instruments (scanning mobility sizer, aerosol photometer) and electron microscopy (SEM and TEM) analyses. As a main result, the presence of silica aerogel in the mortar did not modify the emission profile for submicronic particles during sawing in comparison to the bulk mortar. Emission factors for ultra-fine particles were found to be 88 × 106 and 81 × 106 particles/µg of inhalable dust for the aerogel mortar and bulk mortar, respectively. For concrete sawing, the number concentration of submicronic particles at the OEL is one order of magnitude greater. The aerogel-glass-wool handling generated similar particle number concentration at the OEL with ultra-fine particle emission factors of 647 × 106 particles/µg of inhalable dust, in comparison to 758 × 106 particles/µg of inhalable dust during dry concrete sawing. In conclusion, the methodology introduced in this work provides standardized particle emission factors for comparing materials and activities, while establishing a link between particle number emissions and occupational exposure limits.

Download full-text PDF

Source
http://dx.doi.org/10.1093/annweh/wxae083DOI Listing

Publication Analysis

Top Keywords

emission factors
16
particle number
12
particle emission
12
occupational exposure
12
particles/µg inhalable
12
inhalable dust
12
particle
9
particle size
8
size distribution
8
particles oel
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!