There is growing empirical evidence that animal movement patterns depend on population density. We investigate travelling wave solutions in reaction-diffusion models of animal range expansion in the case that population diffusion is density-dependent. We find that the speed of the selected wave depends critically on the strength of diffusion at low density. For sufficiently large low-density diffusion, the wave propagates at a speed predicted by a simple linear analysis. For small or zero low-density diffusion, the linear analysis is not sufficient, but a variational approach yields exact or approximate expressions for the speed and shape of population fronts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550295 | PMC |
http://dx.doi.org/10.1007/s11538-024-01381-2 | DOI Listing |
Comput Biol Med
January 2025
SCOPIA Research Group, University of the Balearic Islands, Dpt. of Mathematics and Computer Science, Crta. Valldemossa, Km 7.5, Palma, E-07122, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, E-07122, Spain; Laboratory for Artificial Intelligence Applications at UIB (LAIA@UIB), Palma, E-07122, Spain; Artificial Intelligence Research Institute of the Balearic Islands (IAIB), Palma, E-07122, Spain. Electronic address:
Sickle cell disease causes erythrocytes to become sickle-shaped, affecting their movement in the bloodstream and reducing oxygen delivery. It has a high global prevalence and places a significant burden on healthcare systems, especially in resource-limited regions. Automated classification of sickle cells in blood images is crucial, allowing the specialist to reduce the effort required and avoid errors when quantifying the deformed cells and assessing the severity of a crisis.
View Article and Find Full Text PDFAlterations of the extracellular matrix (ECM), including both mechanical (such as stiffening of the ECM) and chemical (such as variation of adhesion proteins and deposition of hyaluronic acid (HA)) changes, in malignant tissues have been shown to mediate tumor progression. To survey how cells from different tissue types respond to various changes in ECM mechanics and composition, we measured physical characteristics (adherent area, shape, cell stiffness, and cell speed) of 25 cancer and 5 non-tumorigenic cell lines on 7 different substrate conditions. Our results indicate substantial heterogeneity in how cell mechanics changes within and across tissue types in response to mechanosensitive and chemosensitive changes in ECM.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA; Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA. Electronic address:
The objective of this study was to form sorghum protein gels and explore their application in 3D food printing. Sorghum proteins were used to prepare gels with concentrations of 15 %, 20 %, 25 %, 30 %, and 35 % (w/w) in 70 % ethanol. The gels were evaluated for their rheological and textural properties and utilized as bioinks for 3D printing.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, USA.
Direct Ink Writing, an extrusion-based 3D printing technique, has attracted growing interest due to its ability to process a broad range of materials and integrate multifunctional printheads with features such as shape-changing nozzles, in-situ curing, material switching, and material mixing. Despite these advancements, incorporating auxiliary controls into Geometry Code (G-Code), the standard programming language for these printers, remains challenging. G-Code's line-by-line execution requires auxiliary control commands to interrupt the print path motion, causing defects in the printed structure.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany.
A novel piezoresistive cantilever microprobe (PCM) with an integrated electrothermal or piezoelectric actuator has been designed to replace current commercial PCMs, which require external actuators to perform contact-resonance imaging (CRI) of workpieces and avoid unwanted "forest of peaks" observed at large travel speed in the millimeter-per-second range. Initially, a PCM with integrated resistors for electrothermal actuation (ETA) was designed, built, and tested. Here, the ETA can be performed with a piezoresistive Wheatstone bridge, which converts mechanical strain into electrical signals by boron diffusion in order to simplify the production process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!