Developing a separation system to enable real-time recovery of acetone-butanol during fermentation.

Appl Microbiol Biotechnol

Department of Animal Science, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, 44691, USA.

Published: November 2024

AI Article Synopsis

  • The study developed hydrophobic stainless steel meshes for effective recovery of ABE (acetone, butanol, and ethanol) from bioreactors during vacuum-assisted gas stripping, minimizing water loss.
  • Three types of meshes with varying pore sizes (180 µm, 300 µm, and 425 µm) were coated with zinc oxide and polydimethylsiloxane, showing that the 180-µm mesh retained significantly more water (54-65% more) compared to uncoated ones.
  • The technology increased butanol concentration in recoveries by up to 10.8-fold and proved effective for real-time ABE extraction from lignocellulosic fermentation without clogging issues.

Article Abstract

Methods such as gas stripping and vacuum-assisted gas stripping (VAGS) result in significant removal of water from the bioreactor, thus requiring continuous water replenishment in the bioreactor. In this study, we developed a hydrophobic stainless steel meshes capable of selectively recovering concentrated ABE stream from the bioreactor during VAGS. Three stainless steel meshes with pore sizes of 180 µm, 300 µm, and 425 µm were made hydrophobic and oleophilic with zinc oxide (ZnO) and polydimethylsiloxane (PDMS). Butanol concentrations in the model solutions range from 3 to 10 g/L which mimic concentrations typically produced during batch ABE fermentation. The meshes were integrated in a 5-L bioreactor containing 2.5 L of operational ABE model solution followed by the evaluation of selective extraction of ABE from both cell-free and Clostridium beijerinckii-rich ABE model solutions. The results show that the 180-µm ZnO/PDMS-coated mesh retained 54-64% more water in the bioreactor without C. beijerinckii cells and 61-65% more water with cells compared to the uncoated mesh. Furthermore, the butanol concentration of condensates recovered with 180-µm ZnO-PDMS-coated mesh was up to 10.8-fold greater than that of uncoated counterpart. Our data demonstrate that the developed ZnO-PDMS mesh can recover high concentrations of ABE while selectively retaining water in the bioreactor. Additionally, this technology demonstrates the potential for real-time ABE recovery during the fermentation of lignocellulosic and colloidal materials, without the concern of clogging the separation system. KEY POINTS: • Hydrophobic mesh enhanced water retention in the bioreactor by up to 1.65-fold. • Butanol concentration in the collected condensate was increased by up to 10.8-fold. • Hydrophobic mesh is compatible with fermentation of lignocellulose.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550279PMC
http://dx.doi.org/10.1007/s00253-024-13340-xDOI Listing

Publication Analysis

Top Keywords

water bioreactor
12
separation system
8
gas stripping
8
stainless steel
8
steel meshes
8
model solutions
8
abe model
8
butanol concentration
8
• hydrophobic
8
hydrophobic mesh
8

Similar Publications

Development of a bioreactor with an integrated non-dispersive infrared CO sensor for rapid and sensitive detection of Cr(VI) toxicity in water.

J Hazard Mater

January 2025

Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, HCM City,  Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Viet Nam. Electronic address:

Whole-cell bioreactors equipped with external physico-chemical sensors have gained attention for real-time toxicity monitoring. However, deploying these systems in practice is challenging due to potential interference from unknown wastewater constituents with liquid-contacted sensors. In this study, a novel approach using a bioreactor integrated with a non-dispersive infrared CO₂ sensor for both toxicity detection and real-time monitoring of microbial growth phases was successfully demonstrated.

View Article and Find Full Text PDF

A low-cost and renewable magnetite-pine bark (MPB) sorbent was evaluated in continuous-flow systems for the removal of various pharmaceuticals from municipal wastewater effluent following membrane bioreactor (MBR) treatment. A 33-day small-scale column test (bed volume: 791 cm) was conducted using duplicate columns of biochar (BC, Novocarbo) and activated carbon (AC, ColorSorb) as reference for two columns of BC and MPB in order to compare the efficiency of AC and MPB. After the small-scale column test, the pharmaceutical concentrations were generally below the detection limit.

View Article and Find Full Text PDF
Article Synopsis
  • A recirculating aquaculture system (RAS) was built with a denitrification bioreactor to improve nitrogen removal from the water, using FeS as an electron donor.
  • The addition of cultured fish led to a significant reduction in nitrogen levels (NO-N and NH-N), achieving a NO-N removal efficiency of 79.04% and maintaining favorable conditions for fish growth and survival.
  • Analysis of microbial communities in the denitrification bioreactor revealed greater diversity compared to synthetic wastewater systems, indicating the process's potential for enhancing nitrogen management in aquaculture settings.
View Article and Find Full Text PDF

Genome-wide identification and expression patterns of uridine diphosphate (UDP)-glycosyltransferase genes in the brown planthopper, Nilaparvata lugens.

Comp Biochem Physiol Part D Genomics Proteomics

December 2024

Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China. Electronic address:

Uridine diphosphate-glycosyltransferases (UGTs) are responsible for glycosylation by combining various small lipophilic molecules with sugars to produce water-soluble glycosides, which are crucial for the metabolism of plant secondary metabolites and detoxification in insects. This study presents a genome-wide analysis of the UGT gene family in the brown planthopper, Nilaparvata lugens, a destructive insect pest of rice in Asia. Based on the similarity to UGT homologs from other organisms, 20 putative NlUGT genes were identified in N.

View Article and Find Full Text PDF

The shortwave infrared (SWIR) region is an ideal spectral window for next-generation bioimaging to harness improved penetration and reduced phototoxicity. SWIR spectral activity may also be accessed via supramolecular dye aggregation. Unfortunately, development of dye aggregation remains challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!