Methods such as gas stripping and vacuum-assisted gas stripping (VAGS) result in significant removal of water from the bioreactor, thus requiring continuous water replenishment in the bioreactor. In this study, we developed a hydrophobic stainless steel meshes capable of selectively recovering concentrated ABE stream from the bioreactor during VAGS. Three stainless steel meshes with pore sizes of 180 µm, 300 µm, and 425 µm were made hydrophobic and oleophilic with zinc oxide (ZnO) and polydimethylsiloxane (PDMS). Butanol concentrations in the model solutions range from 3 to 10 g/L which mimic concentrations typically produced during batch ABE fermentation. The meshes were integrated in a 5-L bioreactor containing 2.5 L of operational ABE model solution followed by the evaluation of selective extraction of ABE from both cell-free and Clostridium beijerinckii-rich ABE model solutions. The results show that the 180-µm ZnO/PDMS-coated mesh retained 54-64% more water in the bioreactor without C. beijerinckii cells and 61-65% more water with cells compared to the uncoated mesh. Furthermore, the butanol concentration of condensates recovered with 180-µm ZnO-PDMS-coated mesh was up to 10.8-fold greater than that of uncoated counterpart. Our data demonstrate that the developed ZnO-PDMS mesh can recover high concentrations of ABE while selectively retaining water in the bioreactor. Additionally, this technology demonstrates the potential for real-time ABE recovery during the fermentation of lignocellulosic and colloidal materials, without the concern of clogging the separation system. KEY POINTS: • Hydrophobic mesh enhanced water retention in the bioreactor by up to 1.65-fold. • Butanol concentration in the collected condensate was increased by up to 10.8-fold. • Hydrophobic mesh is compatible with fermentation of lignocellulose.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550279 | PMC |
http://dx.doi.org/10.1007/s00253-024-13340-x | DOI Listing |
J Hazard Mater
January 2025
Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, HCM City, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Viet Nam. Electronic address:
Whole-cell bioreactors equipped with external physico-chemical sensors have gained attention for real-time toxicity monitoring. However, deploying these systems in practice is challenging due to potential interference from unknown wastewater constituents with liquid-contacted sensors. In this study, a novel approach using a bioreactor integrated with a non-dispersive infrared CO₂ sensor for both toxicity detection and real-time monitoring of microbial growth phases was successfully demonstrated.
View Article and Find Full Text PDFEnviron Res
January 2025
Chemical Process Engineering, P.O. Box 4300, FIN-90014 University of Oulu, Oulu, Finland.
A low-cost and renewable magnetite-pine bark (MPB) sorbent was evaluated in continuous-flow systems for the removal of various pharmaceuticals from municipal wastewater effluent following membrane bioreactor (MBR) treatment. A 33-day small-scale column test (bed volume: 791 cm) was conducted using duplicate columns of biochar (BC, Novocarbo) and activated carbon (AC, ColorSorb) as reference for two columns of BC and MPB in order to compare the efficiency of AC and MPB. After the small-scale column test, the pharmaceutical concentrations were generally below the detection limit.
View Article and Find Full Text PDFACS Omega
December 2024
College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China.
Comp Biochem Physiol Part D Genomics Proteomics
December 2024
Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China. Electronic address:
Uridine diphosphate-glycosyltransferases (UGTs) are responsible for glycosylation by combining various small lipophilic molecules with sugars to produce water-soluble glycosides, which are crucial for the metabolism of plant secondary metabolites and detoxification in insects. This study presents a genome-wide analysis of the UGT gene family in the brown planthopper, Nilaparvata lugens, a destructive insect pest of rice in Asia. Based on the similarity to UGT homologs from other organisms, 20 putative NlUGT genes were identified in N.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
The shortwave infrared (SWIR) region is an ideal spectral window for next-generation bioimaging to harness improved penetration and reduced phototoxicity. SWIR spectral activity may also be accessed via supramolecular dye aggregation. Unfortunately, development of dye aggregation remains challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!