AI Article Synopsis

  • * The study focuses on two key processes during bond rupture in laser-assisted field emission: the probability of molecular ions being released (PMI) and the probability of multiple fragments being emitted simultaneously (PME).
  • * The ability to differentiate between solids with various types of bonds (metallic, covalent, metavalent) based on their PMI and PME values paves the way for enhanced understanding and design of advanced materials, potentially leading to the new term bonding probe tomography (BPT).

Article Abstract

Atom probe tomography is frequently employed to characterize the elemental distribution in solids with atomic resolution. Here the potential of this technique to locally probe chemical bonds is reviewed and discussed. Two processes characterize the bond rupture in laser-assisted field emission, the probability of molecular ions (PMI), i.e., the probability that molecular ions are evaporated instead of single (atomic) ions, and the probability of multiple events (PME), i.e., the correlated field-evaporation of more than a single fragment upon laser- or voltage pulse excitation. Here it is demonstrated that one can clearly distinguish solids with metallic, covalent, and metavalent bonds based on their bond rupture, i.e., their PME and PMI values. These findings open new avenues in understanding and designing advanced materials, since they allow a quantification of bonds in solids on a nanometer scale, as will be shown for several examples. These possibilities would even justify calling the present approach bonding probe tomography (BPT).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636162PMC
http://dx.doi.org/10.1002/adma.202403046DOI Listing

Publication Analysis

Top Keywords

probe tomography
12
atom probe
8
probe chemical
8
chemical bonds
8
bonds solids
8
bond rupture
8
probability molecular
8
molecular ions
8
tomography local
4
probe
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!