Recreating natural organisms' dynamic shape-morphing and adaptive color-changing capabilities in a compact structure poses significant challenges but unlocks unprecedented hybridized robotic-visual applications. Overcoming programmability and predictability obstacles is key to achieving real-time, responsive changes in appearance and functionality, enhancing robot-environment-user interactions in ways previously unattainable. Herein, a Soft Magneto-Mechano-Chromic (SoMMeC) structure comprising a magnetic actuating and a synthetic photonic film, mirroring the intricate color-tuning mechanism of chameleons is devised. A model combining numerical simulation and a strain-dependent color evolution map enables precise predictions and controllable shape-color alterations across various geometrical and magnetization profiles. The SoMMeC exhibits rapid (0.1s), broad (full-visible spectrum), tether-free (remote magnetic manipulation), and programmable (model-guided control) color transformations, surpassing traditional limitations with its real-time response, broad and omnidirectional coloration for enhanced visibility, and robustness against external disturbances. The SoMMeC translates into dynamic advertising iridescence, adaptive camouflage, self-sensing, and multi-level encryption, and transcends traditional robotics by seamlessly blending dynamic movement with nuanced visual changes. It opens up a spectrum of applications that redefine robotic functionality through dynamic appearance modulation, making robotic systems more versatile, adaptive, and suitable for unexplored integrative functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202406714 | DOI Listing |
JMIR Rehabil Assist Technol
December 2024
Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain (CRIR) - Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM) du Centre intégré universitaire de santé et de services sociaux du Centre-Sud-de-l'Île-de-Montréal (CCSMTL), Université de Montréal, Institut de Réadaptation Gingras Lindsay de Montréal, 6300 avenue de Darlington, Montréal, QC, H3S 2J4, Canada, 1 514-343-6111.
Background: Stationary bikes are used in numerous rehabilitation settings, with most offering limited functionalities and types of training. Smart technologies, such as artificial intelligence and robotics, bring new possibilities to achieve rehabilitation goals. However, it is important that these technologies meet the needs of users in order to improve their adoption in current practice.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK.
Despite the significant advantages of Shape Memory Polymers (SMPs), material processing and production challenges have limited their applications. Recent advances in fiber manufacturing offer a novel approach to processing polymers, broadening the functions of fibers beyond optical applications. In this study, a thermal drawing technique for SMPs to fabricate Shape Memory Polymer Fibers (SMPFs) tailored for medical applications, featuring programmable stiffness and shape control is developed.
View Article and Find Full Text PDFPurpose: This study aimed to explore the potential application of NAO in guiding patients through rehabilitative exercises using external audiovisual stimuli, focusing on temporospatial control in terms of range of motion (ROM), execution time and movement smoothness.
Methods: This is a preliminary analysis involving ten healthy volunteers and two patients with shoulder musculoskeletal disorders. The protocol was developed in two phases (III and IV) with different ROM limits and including flexion-extension (FE), external-rotation (ER) and internal-rotation (IR) exercises, performed at two speeds and both with and without NAO assistance.
J Neuroeng Rehabil
December 2024
Center for Healthcare Robotics, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
Introduction: Neck pain affects 203 million people globally and is prevalent in various settings due to factors like poor posture, lack of exercise, and occupational hazards. Therefore, addressing ergonomic issues with solutions like a wearable robotic device is crucial. This research presents a novel assistive exosuit, characterized by its slim and lightweight structure and intuitive control without the use of hands, designed to mitigate muscle fatigue in the neck and shoulders during prolonged flexed neck posture.
View Article and Find Full Text PDFFront Robot AI
December 2024
CREATE-Lab, Department of Mechanical Engineering, Swiss Federal Technology Institute of Lausanne (EPFL), Lausanne, Switzerland.
Creativity and style in music playing originates from constraints and imperfect interactions between instruments and players. Digital and robotic systems have so far been unable to capture this naturalistic playing. Whether as an additional tool for musicians, function restoration with prosthetics, or artificial intelligence-powered systems, the physical embodiment and interactions generated are critical for expression and connection with an audience.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!