Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Re-establishing native plants while controlling invasive species is a challenge for many dryland restoration efforts globally. Invasive plants often create highly competitive environments so controlling them is necessary for effective establishment of native species. In the sagebrush steppe of the United States, invasive annual grasses are commonly controlled with herbicide treatments. However, the same herbicides that control invasive annual grasses also impact the native species being planted. As such, carbon-based seed technologies to protect native seeds from herbicide applications are being trialed. In addition to controlling invasive species, ensuring good seed-to-soil contact is important for effective establishment of native species. In this grow room study, we explored the impact of different seed ameliorations when no herbicide was applied and when herbicide was applied. We selected two native species that are important to the sagebrush steppe for this study-the sub-shrub and the perennial bunchgrass -and used three different seed ameliorations-seed pelleting with local soil alone, local soil plus activated carbon and activated carbon alone-to ensure both greater seed-to-soil contact and protection against herbicides. Shoot and root biomass data were collected eight weeks after planting. We found that when herbicide was not applied, had the strongest response to the soil alone amelioration, while had the strongest response to the activated carbon alone amelioration. However, when herbicide was applied, performed best with the soil plus activated carbon treatments, with an average 1500% increase in biomass, while performed best with the activated carbon alone treatments, with an over 4000% increase in biomass, relative to bare seed. The results from our study indicate that there is a positive effect of local soils and activated carbon as seed ameliorations, and further testing in the field is needed to understand how these ameliorations might perform in actual restoration scenarios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548513 | PMC |
http://dx.doi.org/10.3390/plants13213074 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!