Somatic embryogenesis is valuable for clonal propagation and genetic improvement, and it also serves as an ideal system for studying plant development mechanisms. In , microRNA171 and its target gene (), which has two alternative splicing variants, can regulate somatic embryogenesis; however, the underlying molecular mechanism is still unknown. In this study, we overexpressed these two variants in and and then used the RNA-Seq method to screen genes from and , whose expression patterns are related to those of variants. The screened genes were then used to search proteins to identify the candidate target genes of . After yeast one-hybrid and dual- luciferase transcriptional activity assays, , , , (), and () were confirmed to be the target genes of ; in addition, and () were confirmed to be the target genes of LaSCL6-var2. Moreover, APETALA2-like protein 2, a transcription factor from the AP2/ERF family, was shown to interact with LaSCL6-var1 and LaSCL6-var2. Taken together, our results suggest a regulatory network of miR171-. The findings presented here not only provide novel insights into the regulation of the miR171- module but also explain the mechanism underlying larch somatic embryogenesis and other biological processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548147 | PMC |
http://dx.doi.org/10.3390/plants13213072 | DOI Listing |
Plants (Basel)
December 2024
State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Roses are one of the most important flowers applied to landscape, cut flowers, fragrance and food industries widely. As an effective method for plant reproduction, the regeneration via somatic embryos is the most promising method for breed improvement and genetic transformation of woody plants. However, lower somatic embryogenesis (SE) induction rates and genotypic constraints impede progress in genetic transformation in rose.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea.
The increasing emphasis on animal welfare and ethics, as well as the considerable time and cost involved with animal testing, have prompted the replacement of many aspects of animal testing with alternative methods. In the area of developmental toxicity, the embryonic stem cell test (EST) has played a significant role. The EST evaluates toxicity using mouse embryonic stem cells and somatic cells and observes the changes in heartbeat after cardiac differentiation.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia.
Rafn. is a medicinal plant used as a model for studying plant developmental processes due to its developmental plasticity and ease of manipulation in vitro. Identifying the genes involved in its organogenesis and somatic embryogenesis (SE) is the first step toward unraveling the molecular mechanisms underlying its morphogenic plasticity.
View Article and Find Full Text PDFPhytopathology
January 2025
University of Florida, Microbiology & Cell Science, Cancer/Genetics Research Complex 302, 2033 Mowry Road, Gainesville, Florida, United States, 32610;
(L.) Moench is the fifth most important cereal crop and expected to gain prominence due to its versatility, low input requirements, and tolerance to hot and dry conditions. In warm and humid environments the productivity of sorghum is severely limited by the hemibiotrophic fungal pathogen , the causal agent of anthracnose.
View Article and Find Full Text PDFPLoS Biol
January 2025
Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
Sumoylation is a posttranslational modification essential for multiple cellular functions in eukaryotes. ULP-2 is a conserved SUMO protease required for embryonic development in Caenorhabditis elegans. Here, we revealed that ULP-2 controls germline development by regulating the PHD-SET domain protein, SET-26.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!