A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Encapsulation of ɣ-Aminobutyric Acid Compounds Extracted from Germinated Brown Rice by Freeze-Drying Technique. | LitMetric

Gamma-aminobutyric acid (GABA) from plants has several bioactivities, such as neurotransmission, anti-cancer cell proliferation, and blood pressure control. Its bioactivities vary when exposed to pH, heat, and ultraviolet. This study analyzed the protective effect of the GABA encapsulation technique using gum arabic (GA) and maltodextrin (MD) and the freeze-drying method. The impact of different ratios of the wall material GA and MD on morphology, GABA content, antioxidant activity, encapsulation efficiency, process yield, and physical properties were analyzed. Results showed that the structure of encapsulated GABA powder was similar to broken glass pieces of various sizes and irregular shapes. The highest GABA content and encapsulation efficiency were, respectively, 90.77 mg/g and 84.36% when using the wall material GA:MD ratio of 2:2. The encapsulated powder's antioxidant activity was 1.09-1.80 g of encapsulation powder for each formula, which showed no significant difference. GA and MD as the wall material in a 2:2 (/) ratio showed the lowest bulk density. The high amount of MD showed the highest Hausner ratio (HR), and Carr's index (CI) showed high encapsulation efficiency and process yield. The stability of encapsulated GABA powder can be kept in clear glass with a screw cap at 35 °C for 42 days compared to the non-encapsulated one, which can be preserved for only 18 days under the same condition. In conclusion, this study demonstrated that the freeze-drying process for GABA encapsulation preserved GABA component extracts from brown rice while increasing its potential beneficial properties. Using a wall material GA:MD ratio of 2:2 resulted in the maximum GABA content, solubility, and encapsulation efficiency while having the lowest bulk density.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547326PMC
http://dx.doi.org/10.3390/molecules29215119DOI Listing

Publication Analysis

Top Keywords

wall material
16
encapsulation efficiency
16
gaba content
12
gaba
9
encapsulation
8
brown rice
8
gaba encapsulation
8
antioxidant activity
8
efficiency process
8
process yield
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!