Carnosine is a naturally occurring dipeptide that has been advocated by some authors as an interesting scaffold for the development of potential therapeutic agents in view of the positive outcomes of its supplementation in animal models of human diseases. Its mode of action seems to depend on the quenching of toxic electrophiles, such as 4-hydroxynonenal (HNE). However, carnosine's bioavailability in humans is lower than that in other mammals. The main reason for such an unfavorable pharmacokinetic profile is the activity of the enzyme human serum carnosinase (E.C. 3.4.13.20), which rapidly hydrolyzes carnosine upon absorption. Therefore, some studies have focused on the design of carnosinase-resistant derivatives that retain binding activity toward toxic electrophiles. Nevertheless, the structural modification of the -terminus amino group of carnosine has rarely been considered, possibly because of its key role in the electrophile scavenging mechanism. This was proven, since some carnosine -terminus modification generated inactive compounds, despite some derivatives retaining oral bioavailability and gaining resistance to carnosinase hydrolysis. Herein, we therefore report a study aimed at exploring whether the amino group of carnosine can be conveniently modified to develop carnosinase-resistant derivatives retaining the dipeptide activity toward toxic electrophiles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547551PMC
http://dx.doi.org/10.3390/molecules29215083DOI Listing

Publication Analysis

Top Keywords

toxic electrophiles
12
carnosinase-resistant derivatives
8
activity toxic
8
amino group
8
group carnosine
8
derivatives retaining
8
carnosine
6
exploring secondary
4
secondary amine
4
amine carnosine
4

Similar Publications

The main protease (M) of SARS-CoV-2 is a key drug target for the development of antiviral therapeutics. Here, we designed and synthesized a series of small-molecule peptidomimetics with various cysteine-reactive electrophiles. Several compounds were identified as potent SARS-CoV-2 M inhibitors, including compounds (IC = 0.

View Article and Find Full Text PDF

Bracken Fern Carcinogen, Ptaquiloside, Forms a Guanine -Adduct in DNA.

J Agric Food Chem

January 2025

Centre for Chemical Biology, Department of Chemistry, Institute for Nucleic Acids, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.

Bracken fern ( sp.) is a viable and vigorous plant with invasive potential, ingestion of which causes chronic illness and cancers in farm animals. Bracken is a suspected human carcinogen, and exposure can result from ingestion of bracken-contaminated water, dairy products, or meat derived from livestock grazing on bracken fern.

View Article and Find Full Text PDF

The NF-E2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway is a potential therapeutic target for central nervous system diseases. This review emphasizes the role of oxidative stress and neuroinflammation in neurodegenerative diseases, highlighting the therapeutic potential of Nrf2 activators such as dimethyl fumarate (DMF). DMF, initially administered for treating psoriasis, has demonstrated efficacy in multiple sclerosis and is metabolized to monomethyl fumarate, which may exert significant therapeutic effects.

View Article and Find Full Text PDF

Sulfur autotrophic denitrification (SAD) is a promising technology for nitrogen removal, particularly suitable for low carbon-to-nitrogen wastewater without additional carbon sources. However, SAD inevitably generates significant amounts of SO. To address this issue, combining SAD with iron-carbon micro-electrolysis technology, which can reduce sulfate, provides electron donors for autotrophic denitrification and facilitates sulfur cycling.

View Article and Find Full Text PDF

This study investigated the potential genotoxic and carcinogenic effects of N-nitrosodimethylamine (NDMA), a hazardous compound found in ranitidine formulations that are used to treat excessive stomach acid. The study first examined the effects of NDMA-contaminated ranitidine formulation on Allium cepa root growth and mitotic activity. The results demonstrated dose-dependent decreases in both root growth and mitotic index indicating genotoxicity and cell division disruption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!