Polyphenols are associated with various beneficial health effects. These compounds are present in edible plants such as fruits and vegetables, and the human body absorbs them through the consumption of foods and beverages. Wine is recognized as a rich source of these valuable compounds, and it has been well established that polyphenols present in red wine possess numerous biologically active functions related to health promotion. Therefore, most scientific research has been focused on red wine polyphenols, whereas white wine polyphenols have been neglected. This review presents the summarized information about the most abundant polyphenols in white wines, their concentration, their impact on wine quality and their potential health effects, such as neuroprotective and cardioprotective activities, antioxidant potential, antimicrobial activity and their positive effects on lipids. These findings are an effort to help compensate for the relative lack of relevant data in the scientific literature regarding white wine polyphenols.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547695PMC
http://dx.doi.org/10.3390/molecules29215074DOI Listing

Publication Analysis

Top Keywords

polyphenols white
12
white wine
12
wine polyphenols
12
wine
8
impact wine
8
wine quality
8
quality potential
8
potential health
8
health effects
8
red wine
8

Similar Publications

Green mold caused by is a major post-harvest disease in citrus fruits. Therefore, the search for sustainable and low-environmental-impact alternatives for the management of these fungi is of utmost importance. L.

View Article and Find Full Text PDF

Grape skin is an excellent bioactive compound source with numerous beneficial health effects. This study aimed to determine and compare the antidiabetic potential of the grape skin of indigenous Croatian white grapevine varieties. The grape skin extracts (GSEs) were assessed for total polyphenols, antioxidant activity, and inhibition potential against α-amylase and α-glucosidase, enzymes responsible for carbohydrate metabolism.

View Article and Find Full Text PDF

Pacific white shrimp shell protein hydrolysates (SSPHs) produced using alcalase (UAH) and papain (UPH), and polyphenols (PPNs) conjugates were prepared using variable concentrations (0.5-3% /) of different polyphenols (EGCG, catechin, and gallic acid). When 2% (/) of a redox pair was used for conjugation, 0.

View Article and Find Full Text PDF

Resveratrol (RSV), a natural polyphenol, has been suggested to influence glucose and lipid metabolism. However, the underlying molecular mechanism of its action remains largely unknown due to its multiple biological targets and low bioavailability. In this study, we demonstrate that RSV supplementation ameliorates high-fat-diet (HFD)-induced gut microbiota dysbiosis, enhancing the abundance of anti-obesity bacterial strains such as and .

View Article and Find Full Text PDF

Capsaicin is a polyphenol with a well-known anti-obesity potential, which could activate brown adipose tissue and promote the browning of white adipose tissue. Indeed, conventional proteomics have been used to investigate the browning effects of capsaicin on adipose tissue. However, the existence of a layer of white adipose tissue above the interscapular brown adipose tissue poses a great challenge to obtain intact interscapular brown adipose tissue without including adjacent white adipose tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!