Allylic oxygenated derivatives of himachalenes are highly valued molecules due to their potential applications in perfumery, cosmetics, and pharmaceuticals. Previous attempts at catalyzed allylic oxidation of himachalenes led to the formation of a very stable η-allyl palladium complex, preventing any further reaction development. Herein, we present the first successful palladium-catalyzed synthesis of a novel allylic acetoxylated derivative of himachalenes. This reaction was achieved by incorporating an aromatic ring into the substrate structure. The resulting intermediate complex was isolated and characterized using nuclear magnetic resonance spectroscopy and X-ray crystallography. Density functional theory (DFT) calculations were performed to compare the reactivity of the newly synthesized complex with previously reported ones. The theoretical results confirm that the introduction of an aromatic ring enhances the reactivity of the η³-allyl palladium complex, thereby facilitating the desired transformation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547928PMC
http://dx.doi.org/10.3390/molecules29215040DOI Listing

Publication Analysis

Top Keywords

synthesis novel
8
novel allylic
8
allylic acetoxylated
8
palladium complex
8
aromatic ring
8
complex
5
palladium-catalyzed acetoxylation
4
acetoxylation γ-dehydro-aryl-himachalene
4
γ-dehydro-aryl-himachalene synthesis
4
allylic
4

Similar Publications

Neuronal TRPV1-CGRP axis regulates peripheral nerve regeneration through ERK/HIF-1 signaling pathway.

J Neurochem

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Severe trauma frequently leads to nerve damage. Peripheral nerves possess a degree of regenerative ability, and actively promoting their recovery can help restore the sensory and functional capacities of tissues. The neuropeptide calcitonin gene-related peptide (CGRP) is believed to regulate the repair of injured peripheral nerves, with neuronal transient receptor potential vanilloid type 1 (TRPV1) potentially serving as a crucial upstream factor.

View Article and Find Full Text PDF

Despite recent advances in cancer treatment, there is still a need for novel compounds with antineoplastic activity. Among 11 biphenyl-based organogold(III) -heterocyclic carbene (NHC) (BGC) complexes of general formula [(C^C)Au(NHC-pyr)X], where (C^C) = 4,4'-ditertbutylbiphenyl, X = Cl or phenylacetylide, and (NHC-pyr) is a pyridyl-substituted NHC ligand, the complex bearing a 4-CF-pyridyl substituent and a chloride ligand showed promising antineoplastic activity on the triple negative breast cancer cell line. was able to induce cell apoptosis but had no effect on the cell cycle.

View Article and Find Full Text PDF

Skin-like bioelectronics offer a transformative technological frontier, catering to continuous and real-time yet highly imperceptible and socially discreet digital healthcare. The key technological breakthrough enabling these innovations stems from advancements in novel material synthesis, with unparalleled possibilities such as conformability, miniature footprint, and elasticity. However, existing solutions still lack desirable properties like self-adhesivity, breathability, biodegradability, transparency, and fail to offer a streamlined and scalable fabrication process.

View Article and Find Full Text PDF

Sonogenetics is a novel antiarrhythmic mechanism.

Chaos

January 2025

School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China.

Arrhythmia of the heart is a dangerous and potentially fatal condition. The current widely used treatment is the implantable cardioverter defibrillator (ICD), but it is invasive and affects the patient's quality of life. The sonogenetic mechanism proposed here focuses ultrasound on a cardiac tissue, controls endogenous stretch-activated Piezo1 ion channels on the focal region's cardiomyocyte sarcolemma, and restores normal heart rhythm.

View Article and Find Full Text PDF

Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by reduced platelet levels and heightened susceptibility to bleeding resulting from augmented autologous platelet destruction and diminished thrombopoiesis. Although antibody-mediated autoimmune reactions are widely recognized as primary factors, the precise etiological agents that trigger ITP remain unidentified. The pathogenesis of ITP remains unclear owing to the absence of comprehensive high-throughput data, except for the belated emergence of autoreactive antibodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!