Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The phosphinito-phosphinous acid ligand (PAP) is a singular bidentate-like self-assembled ligand exhibiting dissymmetric but interchangeable electronic properties. This unusual structure has been used for the generation of active palladium hydride through alcohol oxidation. In this paper, we report the first theoretical highlight of the adaptative modulation ability of this ligand within a direct H-abstraction path for Pd and Pt catalyzed alcohol oxidation. A reaction forces study revealed rearrangements in the ligand self-assembling system triggered by a simple proton shift to promote the metal hydride generation via concerted six-center mechanism. We unveil here the peculiar behavior of the phosphinito-phosphinous acid ligand in this catalysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547856 | PMC |
http://dx.doi.org/10.3390/molecules29214999 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!