High habitual consumption of non-nutritive sweeteners (NNS) is linked to increased incident type 2 diabetes, with emerging clinical evidence that effects on gut microbiota may, in part, drive this risk. However, the precise contribution of the effects of NNS on gut microbiota to host glycemic responses remains unclear. Ten-week-old male C57BL/6 mice (N = 10 per group) were randomized to drinking water with or without combined NNS (sucralose 1.5 mg/mL plus acesulfame-K 2.5 mg/mL) and with or without antibiotics to deplete gut microbiota (ABX, 1 mg/mL ampicillin and neomycin) over two weeks. Oral glucose tolerance tests (OGTT, 2 g/kg) were conducted on days -1 and 12. On day 14, mice underwent a jejunal infusion of glucose (300 mg) with 3-O-methyl glucose (30 mg, 3-OMG, a marker of glucose absorption) in 1.5 mL for 30 min, followed by blood collection and bioassays. Data were analyzed using ANOVA with NNS and ABX as factors. Jejunal glucose absorption was augmented in NNS+ mice relative to NNS- (31%; 3-OMG T30; ≤ 0.05) independent of ABX. ABX attenuated OGTT responses independent of NNS supplementation (-35%; incremental AUC, ≤ 0.001). NNS+ ABX+ mice had augmented GLP-1 responses to intrajejunal glucose relative to other groups (69-108%, < 0.05). These findings demonstrate that sub-acute NNS supplementation augments glucose absorption independent of gut microbiota in mice but does not disrupt glycemic responses. Antibiotic depletion of gut microbiota markedly increased glucose tolerance in mice, which may involve the actions of GLP-1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548007 | PMC |
http://dx.doi.org/10.3390/nu16213628 | DOI Listing |
J Physiol
January 2025
Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
Important health disparities are observed in the prevalence of obesity and associated non-communicable diseases (NCDs), including type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD) among ethnic groups. Yet, the underlying factors accounting for these disparities remain poorly understood. Fructose has been widely proposed as a potential mediator of these NCDs, given that hepatic fructose catabolism can result in deleterious metabolic effects, including insulin resistance and hepatic steatosis.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Life Sciences, Chongqing University, Chongqing, 401331, China.
The diverse and dynamic population of microorganisms present in the gut microbiota may affect host health. There are evidences to support the role of gut microbiota as a key player in reproductive development. Unfortunately, the relationship between reproductive disorders caused by aging and gut microbiota remains largely unknown.
View Article and Find Full Text PDFPLoS One
January 2025
Center for Inflammation, Immunity, & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America.
Microbiota-induced production of IL-22 by type 3 innate lymphoid cells (ILC3) plays an important role in maintaining intestinal health. Such IL-22 production is driven, in part, by IL-23 produced by gut myeloid cells that have sensed select microbial-derived mediators. The extent to which ILC3 can directly respond to microbial metabolites via IL-22 production is less clear, in part due to the difficulty of isolating and maintaining sufficient numbers of viable ILC3 ex vivo.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
As part of the intestinal microbiota, can elicit a humoral response in the gastrointestinal tract (GIT) that is mainly directed toward hyphal antigens. This response has been implicated in controlling the invasive form of the fungus and maintaining the yeast as an innocuous commensal. However, the specific targets of this response are still unknown.
View Article and Find Full Text PDFMicrob Genom
January 2025
GMT Science 75 route de Lyons-La-Foret, Rouen F-76000, France.
Microbiome profiling tools rely on reference catalogues, which significantly affect their performance. Comparing them is, however, challenging, mainly due to differences in their native catalogues. In this study, we present a novel standardized benchmarking framework that makes such comparisons more accurate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!