A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and Evaluation of ABI-171, a New Fluoro-Catechin Derivative, for the Treatment of Idiopathic Pulmonary Fibrosis. | LitMetric

AI Article Synopsis

  • Researchers developed a new small molecule, ABI-171, targeting specific kinases related to idiopathic pulmonary fibrosis (IPF) to combat its progression and high mortality rates.
  • In a mouse model, ABI-171 showed significant improvements in lung health, reducing fibrosis and inflammation, as well as weight loss in treated mice, whether given before or after disease onset.
  • The treatment led to lower mortality rates and better overall lung function compared to current treatments like pirfenidone and EGCG, indicating ABI-171's potential as a promising therapy for IPF.

Article Abstract

The persistent challenge of idiopathic pulmonary fibrosis (IPF), characterized by disease progression and high mortality, underscores the urgent need for innovative therapeutic strategies. We have developed a novel small molecule-catechin derivative ABI-171-selectively targeting dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) and proviral integration site for Moloney murine leukemia virus 1 (PIM1) kinases, crucial in the pathogenesis of fibrotic processes. We employed the Bleomycin-induced (intratracheal) mouse model of pulmonary fibrosis (PF) to evaluate the therapeutic efficacy of ABI-171. Mice with induced PF were treated QD with ABI-171, either prophylactically or therapeutically, using oral and intranasal routes. Pirfenidone (100 mg/kg, TID) and Epigallocatechin gallate (EGCG, 100 mg/kg, QD), a natural catechin currently in a Phase 1 clinical trial, were used as reference compounds. ABI-171, administered prophylactically, led to a significant reduction in hydroxyproline levels and fibrotic tissue formation compared to the control group. Treatment with ABI-171 improved body weight, indicating mitigation of disease-related weight loss. Additionally, ABI-171 demonstrated anti-inflammatory activity, reducing lymphocyte and neutrophil infiltration. In the therapeutic setting, ABI-171, administered 7 days post-induction, reduced mortality rates ( = 0.04) compared with the bleomycin and EGCG control groups. ABI-171 also ameliorated the severity of lung injuries assessed by improved Masson's trichrome scores when administered both orally and intranasally. ABI-171 significantly decreases bleomycin-induced PF and improves survival in mice, showcasing promising therapeutic potential beyond current medications like pirfenidone and EGCG for patients with IPF. Based on these results, further studies with ABI-171 are ongoing in preclinical studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11546061PMC
http://dx.doi.org/10.3390/ijms252111827DOI Listing

Publication Analysis

Top Keywords

pulmonary fibrosis
12
abi-171
10
idiopathic pulmonary
8
100 mg/kg
8
abi-171 administered
8
development evaluation
4
evaluation abi-171
4
abi-171 fluoro-catechin
4
fluoro-catechin derivative
4
derivative treatment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!