Acute lymphoblastic leukemia (ALL) is a hematopoietic disorder that mainly affects the child population, and it is characterized by the presence of lymphoid progenitor or precursor cells with different genetic alterations. The origin of this disease is controversial, since some authors assumed that leukemic transformation occurs in a lymphoid progenitor, and there is also evidence that suggests the existence of leukemic initiating cells (LIC). PTL, DMAPT, and PU-H71 are agents that have been shown to eliminate bulk and stem cells from myeloid leukemias, but this effect has not been analyzed in lymphoblastic leukemias. In this study, we evaluated the effect of these compounds in different populations from pediatric B-ALL. For this, bone marrow samples from pediatric patients without treatment were obtained and cultured in the presence or absence of PTL, DMAPT, and PU-H71. The viability and apoptosis index were analyzed by flow cytometry in different hematopoietic subpopulations. These observations indicate that PTL and DMAPT are able to reduce B-ALL cells with a minimum effect in normal hematopoietic and non-hematopoietic cells. In contrast, PU-H71 was able to reduce the leukemic population and had a minimal effect in normal cells. These results present evidence that PTL and DMAPT are able to abrogate in vitro different populations of B-ALL and could represent a possibility of treatment, as well as prevent disease progression or relapse.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11546800 | PMC |
http://dx.doi.org/10.3390/ijms252111707 | DOI Listing |
Int J Mol Sci
October 2024
Laboratorio de Células Troncales Tumorales, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN Siglo XXI, Instituto Mexicano del Seguro Social, CDMX 06725, Mexico.
Acute lymphoblastic leukemia (ALL) is a hematopoietic disorder that mainly affects the child population, and it is characterized by the presence of lymphoid progenitor or precursor cells with different genetic alterations. The origin of this disease is controversial, since some authors assumed that leukemic transformation occurs in a lymphoid progenitor, and there is also evidence that suggests the existence of leukemic initiating cells (LIC). PTL, DMAPT, and PU-H71 are agents that have been shown to eliminate bulk and stem cells from myeloid leukemias, but this effect has not been analyzed in lymphoblastic leukemias.
View Article and Find Full Text PDFComput Math Methods Med
July 2022
Department of Thyroid Head and Neck Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
Applied science nowadays works on the isolation and application of biological macromolecules (BMM). These BMM are isolates from plants using different techniques and used as anticancer, antimicrobial, and anti-inflammatory drugs. Parthenolide (PLT) is one of the most important biological macromolecules and a naturally occurring sesquiterpene lactone that is isolated from a plant species ().
View Article and Find Full Text PDFOncol Rep
March 2021
College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, P.R. China.
Glioblastoma (GBM) is an aggressive malignancy with a high rate of tumor recurrence after treatment with conventional therapies. Parthenolide (PTL), a sesquiterpene lactone extracted from the herb Tanacetum parthenium or feverfew, possesses anticancer properties against a wide variety of solid tumors. In the present study, a series of PTL derivatives were synthesized and screened.
View Article and Find Full Text PDFJ Cell Mol Med
October 2018
Leukemic Stem Cells Lab, Oncology Research Unit, Mexican Institute of Social Security, Oncology Hospital, "Siglo XXI" National Medical Center, Mexico City, Mexico.
Tyrosine kinase inhibitors (TKI) have become a first-line treatment for chronic myeloid leuakemia (CML). TKIs efficiently target bulk CML cells; however, they are unable to eliminate the leukaemic stem cell (LSC) population that causes resistance and relapse in CML patients. In this study, we assessed the effects of parthenolide (PTL) and dimethyl amino parthenolide (DMAPT), two potent inhibitors of LSCs in acute myeloid leukaemia (AML), on CML bulk and CML primitive (CD34 lin ) cells.
View Article and Find Full Text PDFClin Exp Metastasis
October 2018
Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, SA, Australia.
Despite advances in prostate cancer therapy, dissemination and growth of metastases results in shortened survival. Here we examined the potential anti-cancer effect of the NF-κB inhibitor parthenolide (PTL) and its water soluble analogue dimethylaminoparthenolide (DMAPT) on tumour progression and metastasis in the TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model of prostate cancer. Six-week-old male TRAMP mice received PTL (40 mg/kg in 10% ethanol/saline), DMAPT (100 mg/kg in sterile water), or vehicle controls by oral gavage thrice weekly until palpable tumour formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!