Rice provides poor yields in acidic soils due to several nutrient deficiencies and metal toxicities. The low availability of phosphorus (P) in acidic soils offers a natural condition for screening genotypes for grain yield and phosphorus utilization efficiency (PUE). The objective of this study was to phenotype a subset of indica rice accessions from 3000 Rice Genome Project (3K-RGP) under acidic soils and find associated genes and alleles. A panel of 234 genotypes, along with checks, were grown under low-input acidic soils for two consecutive seasons, followed by a low-P-based hydroponic screening experiment. The heritability of the agro-morphological traits was high across seasons, and Ward's clustering method identified 46 genotypes that can be used as low-P-tolerant donors in acidic soil conditions. Genotypes ARC10145, RPA5929, and K1559-4, with a higher grain yield than checks, were identified. Over 29 million SNPs were retrieved from the Rice SNP-Seek database, and after quality control, they were utilized for a genome-wide association study (GWAS) with seventeen traits. Ten quantitative trait nucleotides (QTNs) for three yield traits and five QTNs for PUE were identified. A set of 34 candidate genes for yield-related traits was also identified. An association study using this indica panel for an already reported 1.84 Mbp region on chromosome 2 identified genes and for yield and PUE, respectively. A haplotype analysis for the candidate genes identified favorable allelic combinations. Donors carrying the superior haplotypic combinations for the identified genes could be exploited in future breeding programs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11546970 | PMC |
http://dx.doi.org/10.3390/ijms252111673 | DOI Listing |
ACS Nano
January 2025
Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States.
Nitrogen fertilizer delivery inefficiencies limit crop productivity and contribute to environmental pollution. Herein, we developed Zn- and Fe-doped hydroxyapatite nanomaterials (ZnHAU, FeHAU) loaded with urea (∼26% N) through hydrogen bonding and metal-ligand interactions. The nanomaterials attach to the leaf epidermal cuticle and localize in the apoplast of leaf epidermal cells, triggering a slow N release at acidic conditions (pH 5.
View Article and Find Full Text PDFHeliyon
January 2025
CNR-Istituto per la BioEconomia (IBE), Sede Secondaria di Catania, Via P. Gaifami 18, 95126, Catania, Italy.
Recently, the use of plant-derived biostimulants has been suggested as a sustainable way to improve the nutritional quality of tomato and mitigate the effects of environmental stresses In this regard, a two-year experiment was conducted in open field on four cultivars of tomato (two commercial tomatoes and two local landraces of long shelf-life tomato), to assess the crop response, in terms of fruit yield and quality traits, to the foliar application of two plant-derived biostimulants based on protein hydrolysates (PH), under opposite water regimes (no irrigation and full irrigation), in a semi-arid environment of South Italy. Tomato plants in field were sprayed with a solution containing one of the two biostimulants approximately every 15 days. Full irrigation significantly promoted plant productivity, leading to yields the 22 % and 57 % higher than those produced under no irrigation.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Department of Chemistry, and Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, UK.
Harnessing in situ microbial communities to clean-up polluted natural environments is a potentially efficient means of bioremediation, but often the necessary genes to breakdown pollutants are missing. Genetic bioaugmentation, whereby the required genes are delivered to resident bacteria via horizontal gene transfer, offers a promising solution to this problem. Here, we engineered a conjugative plasmid previously isolated from soil, pQBR57, to carry a synthetic set of genes allowing bacteria to consume terephthalate, a chemical component of plastics commonly released during their manufacture and breakdown.
View Article and Find Full Text PDFInt J Food Microbiol
December 2024
Veterinary Mycology Group, Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Spain.
A few Aspergillus section Nigri species are involved in the ochratoxin A (OTA) contamination in grapes worldwide, and its occurrence is determined by the agro-climatic conditions of each region. The aim of this study was to examine the diversity of black aspergilli isolated from grapes, soil, and air from vineyards with different agro-climatic conditions. A total of four vineyards located in Catalonia were studied.
View Article and Find Full Text PDFChemosphere
January 2025
Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8, Canada; École de technologie supérieure, Montréal (Québec), Canada, H3C 1K3. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!