Preparation and Pharmacokinetics of Brain-Targeted Nanoliposome Loaded with Rutin.

Int J Mol Sci

Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.

Published: October 2024

AI Article Synopsis

  • Rutin is a flavonoid with potential benefits for treating Alzheimer's, preventing brain damage, and combating glioblastoma, but its therapeutic use is hindered by poor solubility and limited ability to cross the blood-brain barrier (BBB).
  • A new delivery system called transferrin-modified Rutin liposomes (Tf-Rutin-Lip) was developed to enhance Rutin's bioavailability and brain-targeting efficiency by incorporating transferrin into liposomes.
  • Experimental results showed that Tf-Rutin-Lip liposomes can cross the BBB without damaging brain cells, demonstrating improved pharmacokinetic properties compared to standard Rutin, thus highlighting their potential as a therapeutic strategy.

Article Abstract

Rutin is a flavonoid compound with potential for treating Alzheimer's disease, preventing brain damage, mitigating cerebral ischemia-reperfusion injury, and exhibiting anti-glioblastoma activity. However, its efficacy is limited by its low solubility, poor bioavailability, and limited permeability across the blood-brain barrier (BBB). To enhance the bioavailability and brain-targeting ability of Rutin, transferrin-modified Rutin liposome (Tf-Rutin-Lip) was developed using liposomes as a delivery system. Rutin liposomes were prepared using the thin-film dispersion method, and the preparation conditions were optimized using the response surface methodology. Then, transferrin (Tf) was incorporated into the liposomes through covalent modification, yielding Tf-Rutin liposomes. The toxicity of these liposomes on bEnd.3 cells, as well as their impact on the tight junctions of these cells, was rigorously evaluated. Additionally, in vitro and in vivo experiments were conducted to validate the brain-targeting efficacy of the Tf-Rutin liposomes. A susceptible detection method was developed to characterize the pharmacokinetics of Tf-Rutin-Lip further. The optimized conditions for the preparation of Tf-Rutin-Lip were determined as follows: a lipid-to-cholesterol ratio of 4.63:1, a drug-to-lipid ratio of 1:45.84, a preparation temperature of 42.7 °C, a hydration volume of 20 mL, a sonication time of 10 min, a surfactant concentration of 80 mg/mL, a DSPE-MPEG-2000 concentration of 5%, and a DSPE-PEG2000-COOH to DSPE-MPEG-2000 molar ratio of 10%. The liposomes did not affect the cell activity of bEnd.3 cells at 24 h and did not disrupt the tight junction of the blood-brain barrier. Tf-modified liposomes were taken up by bEnd.3 cells, which, in turn, passed through the BBB, thus improving liposomal brain targeting. Furthermore, the results of pharmacokinetic experiments showed that the C, AUC, AUC, MRT, and t of Tf-Rutin-Lip increased 1.99-fold, 2.77-fold, 2.58-fold, 1.26-fold, and 1.19-fold compared to those of free Rutin solution, respectively. These findings suggest that Tf-Rutin-Lip is brain-targeted and may enhance the efficacy of Rutin in the treatment of brain disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11546852PMC
http://dx.doi.org/10.3390/ijms252111404DOI Listing

Publication Analysis

Top Keywords

bend3 cells
12
blood-brain barrier
8
liposomes
8
tf-rutin liposomes
8
liposomes bend3
8
rutin
7
tf-rutin-lip
5
preparation
4
preparation pharmacokinetics
4
pharmacokinetics brain-targeted
4

Similar Publications

Exosomes from IH- Induced bEnd3 Cells Promote OSA Cognitive Impairment via miR-20a-5p/MFN2 Mediated Pyroptosis of HT22 Cells.

Nat Sci Sleep

December 2024

Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China.

Background: OSA can cause cognitive impairment (CI). The aim of this study was to investigate whether miR-20a-5p in exosomes derived from bEnd3 cells with IH mediates intercellular crosstalk and induces CI through hippocampal neuronal cell pyroptosis.

Materials And Methods: BEnd3-derived exosomes were isolated from the normal oxygen control group (NC-EXOS) and IH group (IH-EXOS).

View Article and Find Full Text PDF

Background: Exosomes derived from bone marrow mesenchymal stem cells (BMSCs-Exos) have shown therapeutic potential in experimental autoimmune encephalomyelitis (EAE). As a non-invasive method of drug administration, intranasal delivery is anticipated to emerge as a novel option for the treatment of central nervous system (CNS) disorders. Therefore, this study aims to treat EAE by nasal exosomes and explore its specific mechanism, especially its impact on the blood-brain barrier (BBB).

View Article and Find Full Text PDF

serotype 2 ( type 2, SS2) is one of the zoonotic pathogens known to induce meningitis, septicemia, and arthritis in both pigs and humans, resulting in public health concerns. CbpD, also termed CrfP, is one of the choline-binding proteins (CBPs) that was found as a murein hydrolase in SS2 and plays crucial roles in natural genetic transformation under the control of ComRS-ComX regulatory system by a previous study. Nonetheless, the possible functions of CbpD in virulence and pathogenesis in SS2 remain unclear.

View Article and Find Full Text PDF

Extracellular Vesicles From Preeclampsia Disrupt the Blood-Brain Barrier by Reducing CLDN5.

Arterioscler Thromb Vasc Biol

December 2024

Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (H.S., B.I., M.C., F.T., E.E.-G., J.A., C.E.).

Background: The physiopathology of life-threatening cerebrovascular complications in preeclampsia is unknown. We investigated whether disruption of the blood-brain barrier, generated using circulating small extracellular vesicles (sEVs) from women with preeclampsia or placentae cultured under hypoxic conditions, impairs the expression of tight junction proteins, such as CLDN5 (claudin-5), mediated by VEGF (vascular endothelial growth factor), and activation of KDR (VEGFR2 [VEGF receptor 2]).

Methods: We perform a preclinical mechanistic study using sEVs isolated from plasma of pregnant women with normal pregnancy (sEVs-NP; n=9), sEVs isolated from plasma of women with preeclampsia (sEVs-PE; n=9), or sEVs isolated from placentas cultured in normoxia (sEVs-Nor; n=10) or sEVs isolated from placentas cultured in hypoxia (sEVs-Hyp; n=10).

View Article and Find Full Text PDF

Background: There is growing evidence that atrial fibrillation (AF) is a risk factor for cognitive impairment (CI) and dementia in the presence or absence of stroke. The purpose of this study was to explore the mechanism of CI caused by AF.

Methods: Eighteen male canines were randomly divided into a sham group, a pacing group, and a pacing + GW4869 group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!