Severity: Warning
Message: Undefined array key "choices"
Filename: controllers/Detail.php
Line Number: 249
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 249
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 249
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 249
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 249
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 249
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 249
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 249
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: 8192
Message: strpos(): Passing null to parameter #1 ($haystack) of type string is deprecated
Filename: models/Detail_model.php
Line Number: 71
Backtrace:
File: /var/www/html/application/models/Detail_model.php
Line: 71
Function: strpos
File: /var/www/html/application/controllers/Detail.php
Line: 252
Function: insertAPISummary
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: 8192
Message: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated
Filename: helpers/my_audit_helper.php
Line Number: 8919
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 8919
Function: str_replace
File: /var/www/html/application/controllers/Detail.php
Line: 255
Function: formatAIDetailSummary
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Undefined array key "choices"
Filename: controllers/Detail.php
Line Number: 256
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 256
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 256
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 256
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 256
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 256
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Undefined array key "usage"
Filename: controllers/Detail.php
Line Number: 257
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 257
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 257
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 257
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Undefined array key "usage"
Filename: controllers/Detail.php
Line Number: 258
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 258
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 258
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 258
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Undefined array key "usage"
Filename: controllers/Detail.php
Line Number: 259
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 259
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 259
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 259
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Undefined array key "usage"
Filename: controllers/Detail.php
Line Number: 260
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 260
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 260
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 260
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 260
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 260
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
For accurate estimation of broiler chicken weight (CW), a novel hybrid method was developed in this study where several benchmark methods, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Colony Optimization (ACO), Differential Evolution (DE), and Gravity Search Algorithm (GSA), were employed to adjust the Random Forest (RF) hyperparameters. The performance of the RF models was compared with that of classic linear regression (LR). With this aim, data (temperature, relative humidity, feed consumption, and CW) were collected from six poultry farms in Samsun, Türkiye, covering both the summer and winter seasons between 2014 and 2021. The results demonstrated that PSO and ACO significantly enhanced the performance of the standard RF model in all periods. Specifically, the RF-PSO model achieved a significant improvement by reducing the Mean Absolute Error by 5.081% to 60.707%, highlighting its superior prediction accuracy and efficiency. The RF-ACO model also showed remarkable reductions, ranging from 3.066% to 43.399%, depending on the input combinations used. In addition, the computational time required to train the RF models with PSO and ACO was considerably low, indicating their computational efficiency. These improvements emphasize the effectiveness of the PSO and ACO algorithms in achieving more accurate predictions of CW.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544905 | PMC |
http://dx.doi.org/10.3390/ani14213082 | DOI Listing |
Heliyon
December 2024
Department of Electrical Engineering, Faculty of Electrical and Electronic Engineering, National University of Engineering, Lima, Peru.
The wake effect is a relevant factor in determining the optimal distribution of wind turbines within the boundaries of a wind farm. This reduces the incident wind speed on downstream wind turbines, which results in a decrease in energy production for the wind farm. This paper proposes a novel approach for optimizing the distribution of wind turbines using a new Genetic Gray Wolf Optimizer (GGWO).
View Article and Find Full Text PDFEnviron Monit Assess
November 2024
Department of Environmental Engineering, JSS Science and Technology University, Mysuru, India.
To ensure operational efficiency, promote sustainable wastewater treatment practices, and maintain compliance with environmental regulations, it is crucial to evaluate the parameters of treated effluent in wastewater treatment plants (WWTPs). Artificial neural network (ANN) analysis is a promising tool to predict the wastewater characteristics, as a substitute to tedious laboratory techniques. It enables proactive decision-making and contributes to the overall effectiveness of the treatment processes.
View Article and Find Full Text PDFAnimals (Basel)
October 2024
Department of Agricultural Structures and Irrigation, Ondokuz Mayıs University, Samsun 55139, Türkiye.
For accurate estimation of broiler chicken weight (CW), a novel hybrid method was developed in this study where several benchmark methods, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Colony Optimization (ACO), Differential Evolution (DE), and Gravity Search Algorithm (GSA), were employed to adjust the Random Forest (RF) hyperparameters. The performance of the RF models was compared with that of classic linear regression (LR). With this aim, data (temperature, relative humidity, feed consumption, and CW) were collected from six poultry farms in Samsun, Türkiye, covering both the summer and winter seasons between 2014 and 2021.
View Article and Find Full Text PDFPLoS One
October 2024
Department of Electrical Engineering, University of Engineering and Technology, Lahore, Punjab, Pakistan.
A brushless DC (BLDC) motor is likewise called an electrically commutated motor; because of its long help life, high productivity, smaller size, and higher power output, it has numerous modern applications. These motors require precise rotor orientation for longevity, as they utilize a magnet at the shaft end, detected by sensors to maintain speed control for stability. In modern apparatuses, the corresponding, primary, and subsidiary (proportional-integral) regulator is broadly utilized in controlling the speed of modern machines; however, an ideal and effective controlling strategy is constantly invited.
View Article and Find Full Text PDFSci Rep
October 2024
School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China.
The increasing complexity and high-dimensional nature of real-world optimization problems necessitate the development of advanced optimization algorithms. Traditional Particle Swarm Optimization (PSO) often faces challenges such as local optima entrapment and slow convergence, limiting its effectiveness in complex tasks. This paper introduces a novel Hybrid Strategy Particle Swarm Optimization (HSPSO) algorithm, which integrates adaptive weight adjustment, reverse learning, Cauchy mutation, and the Hook-Jeeves strategy to enhance both global and local search capabilities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!