A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predictive and Explainable Artificial Intelligence for Neuroimaging Applications. | LitMetric

Predictive and Explainable Artificial Intelligence for Neuroimaging Applications.

Diagnostics (Basel)

AI Center, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea.

Published: October 2024

Background: The aim of this review is to highlight the new advance of predictive and explainable artificial intelligence for neuroimaging applications.

Methods: Data came from 30 original studies in PubMed with the following search terms: "neuroimaging" (title) together with "machine learning" (title) or "deep learning" (title). The 30 original studies were eligible according to the following criteria: the participants with the dependent variable of brain image or associated disease; the interventions/comparisons of artificial intelligence; the outcomes of accuracy, the area under the curve (AUC), and/or variable importance; the publication year of 2019 or later; and the publication language of English.

Results: The performance outcomes reported were within 58-96 for accuracy (%), 66-97 for sensitivity (%), 76-98 for specificity (%), and 70-98 for the AUC (%). The support vector machine and the convolutional neural network registered the best performance (AUC 98%) for the classifications of low- vs. high-grade glioma and brain conditions, respectively. Likewise, the random forest delivered the best performance (root mean square error 1) for the regression of brain conditions. The following factors were discovered to be major predictors of brain image or associated disease: (demographic) age, education, sex; (health-related) alpha desynchronization, Alzheimer's disease stage, CD4, depression, distress, mild behavioral impairment, RNA sequencing; (neuroimaging) abnormal amyloid-β, amplitude of low-frequency fluctuation, cortical thickness, functional connectivity, fractal dimension measure, gray matter volume, left amygdala activity, left hippocampal volume, plasma neurofilament light, right cerebellum, regional homogeneity, right middle occipital gyrus, surface area, sub-cortical volume.

Conclusion: Predictive and explainable artificial intelligence provide an effective, non-invasive decision support system for neuroimaging applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545799PMC
http://dx.doi.org/10.3390/diagnostics14212394DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
16
predictive explainable
12
explainable artificial
12
intelligence neuroimaging
8
neuroimaging applications
8
original studies
8
learning" title
8
brain image
8
image associated
8
associated disease
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!