A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Impact of Chlorinated Water and Sun Exposure on the Durability and Performance of Swimwear Materials. | LitMetric

Understanding the factors that affect how materials age is essential for creating a durable product with long-lasting properties. It is also important to prioritize defining aging parameters that reflect the real-world conditions the materials will encounter. For this study, a range of swimwear materials were selected consisting of a blend of polymer (polyamide/polyester) and elastane in varying ratios. In order to simulate aging conditions, materials were immersed in chlorinated outdoor pool water during the summer season, either in shade or the sun, for 200 and 300 h. The materials were tested for mass per unit area, thickness, tensile properties, and moisture management. A slight mass per unit area increase was observed, rising from 1.0% after 200 h of chlorine and sunlight exposure to 3.7% after 300 h. Thickness increased by 1.7% after 200 h and 3.2% after 300 h of chlorine exposure, with no significant effect of sunlight. Breaking force dropped by 12.4% after 200 h in chlorine and 8.2% in chlorine and sunlight, becoming more pronounced after 300 h (65.7% in chlorine and 65.1% in chlorine and sunlight). The overall moisture management capability declined from 0.4888 to 0.3457 after 200 h in chlorine and 0.3393 with sunlight, dropping further after 300 h to 0.3838 and 0.3253, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548456PMC
http://dx.doi.org/10.3390/polym16213050DOI Listing

Publication Analysis

Top Keywords

200 chlorine
12
chlorine sunlight
12
swimwear materials
8
conditions materials
8
mass unit
8
unit area
8
moisture management
8
chlorine
7
materials
6
0
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!