Poly(vinyl alcohol) (PVA)-based films have drawn significant attention owing to their potential applications in various industries. The application of wax to PVA films enhanced their resistance to dissolution and water infiltration. Nevertheless, waxed PVA films often exhibit inadequate mechanical properties owing to crack formation. In this study, we evaluated the impact of glycerol as a plasticizer in varying concentrations of Carnauba wax (CW). The addition of glycerol to the PVA/CW blend led to enhanced mechanical properties compared to the blend without glycerol. The functional group and morphology of the blends confirm glycerol compatibility with PVA/CW films. Glycerol was fully dispersed to form a consistent polymer matrix and equally improved the film's contact angle. Furthermore, the thermal property from differential scanning calorimetry and thermogravimetric analysis highlights the plasticizing effect of glycerol in PVA/CW films, potentially broadening their use in food packaging and wrapping applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548645PMC
http://dx.doi.org/10.3390/polym16213024DOI Listing

Publication Analysis

Top Keywords

films glycerol
8
pva films
8
mechanical properties
8
glycerol pva/cw
8
pva/cw films
8
glycerol
7
films
6
mechanical thermal
4
thermal characteristics
4
characteristics films
4

Similar Publications

A new fusidic acid-loaded hydrogel film was prepared via the solvent casting technique using alginate and Aloe vera. The hydrogel films were optimized using different ratios of sodium alginate, Aloe vera, and glycerin. The films containing 10% glycerin (w/w of alginate) exhibited the best appearance.

View Article and Find Full Text PDF

Biodegradable food packaging has gained significant attention owing to environmental concerns. Chitosan (CS), a natural polysaccharide, is popular in packaging films, however, its high hydrophilicity, brittleness, and low mechanical strength limit its use. To improve CS film performance, kafirin (Kaf), glycerol (GE), and tannic acid (TA) were added to create biocomposite films.

View Article and Find Full Text PDF

Characterization of a biocomposite film using coconut jelly powder to improve arrowroot starch and sodium alginate film forming properties.

Int J Biol Macromol

December 2024

Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia; Research Group of Post-harvest, Processing Technology, and Bioproducts, Faculty of Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, Indonesia. Electronic address:

Composite polymers are promising solution to structural setbacks of starch and alginate-based films due to their hydrophilic attributes. Hence, this study aimed to investigate young coconut jelly powder (CJP), an under-utilized by-waste, as a filler using the casting method to develop a novel biocomposite from increments of CJP (1-3 %) to a blended resin of arrowroot starch, sodium alginate, and glycerol. Moreover, the films were characterized by physicomechanical (visual aspect, thickness, color, moisture content, tensile strength, and elongation at break); surface microstructure; water barrier (water vapor permeability, water solubility, and water activities); thermal, crystallinity, and functional group properties; soil, river water, and seawater biodegradability; and coating application in cherry tomato.

View Article and Find Full Text PDF

Chitosan (CS) has excellent film-forming properties; unfortunately, its use as a film wound dressing is limited because of its weak mechanical properties, especially in its wet state. For this reason, modifications with different materials are investigated in this study. The aim of this work was the combination of chitosan with poly (vinyl alcohol) (PVA), magnesium oxide nanoparticles (MgO), and glycerol as a plasticizer agent which can strengthen CS films, increase their flexibility, and enhance their resistance to microbes.

View Article and Find Full Text PDF

The fragile nature of ultrathin polymer films poses a challenge for precise mechanical property measurements in a free-standing state, despite their critical importance for the fabrication and performance of advanced electronic devices under thermal loading. Here, a novel high-temperature tensile testing method for free-standing ultrathin polymer films using a film on heated liquid (FOHL) platform is proposed. Glycerol is chosen for the thermally stable liquid platform for its high surface tension, high boiling point, miscibility with water, and chemical stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!