FRCs (Fiber-Reinforced Composites) are materials that are being used increasingly more often in dentistry as an alternative to traditional restorations made of ceramics or metals. The aim of this study was to carry out a comparative analysis of the strength parameters of a light-curable dental composite reinforced with one single band and two single bands of artificial fibers. The specimens for the strength tests were prepared in accordance with the guidelines of the PN-EN ISO 4049:2019-07 international standard. The test material covered specimens of composite reinforced with single (one or two) bands of fibers. The following bands of fibers were used: carbon (WGL), aramid (AMD) and hybrid carbon-aramid (WGL-AMD). The presence of one single band of aramid fibers caused a three-fold increase in deflection, with a simultaneous increase in the Young's modulus of over 140%. The flexural strength of specimens reinforced with one single band of aramid fibers was higher by 280% than that control group specimens (KONT). To summarize the performed tests, the incorporation of carbon, aramid and hybrid carbon-aramid fibers into organic matrix has a significant impact on the values of the mechanical parameters of dental composites. The results indicate that particular attention should be paid to aramid fibers, which have rarely been used in dentistry so far.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548282 | PMC |
http://dx.doi.org/10.3390/polym16212970 | DOI Listing |
Chem Asian J
January 2025
Vijayanagara Sri Krishnadevaraya University Bellary, Chemistry, Vinayakanagar, Ballari, INDIA.
Hydrogen energy is widely regarded as one of the cleanest forms of green energy due to its bio-friendly nature. One of the major issues is related to high production cost, which can be overcome by designing of effective catalysts . In this study, we report the synthesis of an eco-friendly, affordable, and highly redox-active tetra-imidazole functionalized cobalt phthalocyanine (TImCoPc) through a straightforward method.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah, 84112, USA.
Fiber-reinforced composites (FRCs) possess a remarkable strength-to-weight ratio, making them ideal light-weighing alternative materials of metals used in automotive, aerospace, and outdoor equipment applications, but their recycling is challenging. Chemically recyclable thermoset polymers can enable fiber recovery and reuse; however, challenges remain in the separation and purification of depolymerized small molecules for efficient polymer recycling. To this end, a series of liquid resins for chemically recyclable polymer networks is designed based on phthalic anhydride, a widely produced and inexpensive chemical.
View Article and Find Full Text PDFSci Rep
January 2025
Centre for Advanced Materials and Innovative Technologies, Vellore Institute of Technology, Chennai, 600127, Tamilnadu, India.
Agricultural waste or agro-waste, including natural fibers and particles from various crop parts, is increasingly recognized as a significant contributor to environmental issues. However, from a circular economy perspective, these materials present an opportunity to be repurposed into new, eco-friendly products. The present study, specifically focuses on understanding the effect of different factors, such as the particulate loading and the size (coir and hBN - 1 to 5 wt%; Coir Powder size (100-200 μm) of the particles on composite's corrosion rates and water absorption properties.
View Article and Find Full Text PDFHeliyon
January 2025
A. K. M. Masud, Department of Industrial and Production Engineering (IPE), Bangladesh University of Engineering and Technology (BUET), Dhaka-1000, Bangladesh.
Polymers have been ruling the packaging industry for decades due to their versatility, easy manufacturability, and low cost. The overuse of non-biodegradable plastics in food packaging has become a serious environmental concern. Multi-walled carbon nanotube (MWCNT) reinforced nanocomposites have exceptional electrical, thermal, and mechanical properties.
View Article and Find Full Text PDFHeliyon
January 2025
AU-Sophisticated Testing and Instrumentation Centre (AU-STIC), CoE-Advanced Materials Synthesis (CoE-AMS), Department of Mechanical Engineering, Alliance School of Applied Engineering, Alliance University, Bengaluru, 562106, India.
A consistent research attempt to develop newer lightweight-high strength materials facilitates the automobile sector to excel in product efficiency. The present research is another endeavour to anchor the automobile industries by exploring novel composite. The different earth elements SiC and YO are utilised for the hybrid reinforcement of Al 5052 alloy in four different weight proportions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!