In this paper, we present the synthesis of composite materials comprised of α-cellulose and sugarcane bagasse cellulose fibers grafted with lactic acid and ε-caprolactone. These fibers were incorporated as reinforcements into a PLA matrix by extrusion, producing composite materials with improved mechanical properties. The grafting of lactic acid and ε-caprolactone onto the fibers was confirmed by FTIR spectroscopy, demonstrating the chemical modification of the fibers. The morphology of the fibers and composites was analyzed through scanning electron microscopy (SEM), showing that the fibers are encapsulated within the polymeric matrix. This suggests good PLA-fiber interaction for the 90 PLA/10 α-Cel, 90 PLA/10 LAC-g-α-Cel, and 90 PLA/10 ε-CL-g-α-Cel composite materials. The obtained composite materials were tested under tensile loading. Incorporating 10 wt% of LAC-g-FBA-Cel and α-Cel-g-FBA-Cel grafted fibers into the PLA matrix improved the tensile modulus by 28% and 12%, respectively, compared with PLA. The maximum tensile strength values obtained were for composite materials with 10 wt% PLA/α-Cel, LAC-g-α-Cel, and FBA-Cel with 23, 27, and 37% concerning PLA. DSC thermal studies showed a reduction in the glass transition temperature in the composites with grafted fibers. The results suggest better interfacial adhesion between the PLA matrix and both grafted and non-grafted α-cellulose fibers, which contributes to the observed improvements in the mechanical and thermal properties of the composite materials. The results demonstrate that the composites can be produced through extrusion. Once the optimal concentration has been determined, α-cellulose or sugarcane bagasse grafted with lactic acid and ε-caprolactone can be incorporated into the PLA matrix, exhibiting adjustable properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548187 | PMC |
http://dx.doi.org/10.3390/polym16212964 | DOI Listing |
ACS Macro Lett
January 2025
The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Banacha 12/16, Lodz 90-237, Poland.
J Periodontal Res
January 2025
Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Aim: This study aimed to evaluate and compare the results of combination therapy involving bone grafting and two different resorbable collagen membranes in 1-, 2- and 3-wall infrabony defects.
Methods: A total of 174 patients with infrabony defects (≥ 7 mm periodontal probing depth) were randomized to receive deproteinized bovine bone mineral (DBBM) with either a native porcine non-crosslinked collagen membrane (N-CM, control, n = 87) or a novel porcine crosslinked collagen membrane (C-CM, test, n = 87). Clinical parameters, including periodontal probing depth (PPD), clinical attachment level (CAL), and gingival recession (GR), were recorded at baseline, 12 weeks, and 24 weeks.
Sci Rep
January 2025
Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
Triply periodic minimal surface (TPMS) metamaterials show promise for thermal management systems but are challenging to integrate into existing packaging with strict mechanical requirements. Composite TPMS lattices may offer more control over thermal and mechanical properties through material and geometric tuning. Here, we fabricate copper-plated, 3D-printed triply periodic minimal surface primitive lattices and evaluate their suitability for battery thermal management systems.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, 641112, India.
Sci Data
January 2025
Idaho National Laboratory, Idaho Falls, ID, USA.
Mechanical testing with sub-sized specimens plays an important role in the nuclear industry, facilitating tests in confined experimental spaces with lower irradiation levels and accelerating the qualification of new materials. The reduced size of specimens results in different material behavior at the microscale, mesoscale, and macroscale, in comparison to standard-sized specimens, which is referred to as the "specimen size effect." Although analytical models have been proposed to correlate the properties of sub-sized specimens to standard-sized specimens, these models lack broad applicability across different materials and testing conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!