Solid Forms of Bio-Based Monomer Salts for Polyamide 512 and Their Effect on Polymer Properties.

Polymers (Basel)

National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China.

Published: October 2024

Polyamides' properties are greatly influenced by the polymerization process and the type of feedstock used. The solid forms of nylon salts play a significant role in determining the final characteristics of the material. This study focuses on the long-chain bio-nylon 512. Firstly, we systematically investigated the possible solid forms of the nylon 512 salt, including crystal forms and morphologies, by massive experimental screening, single-crystal X-ray diffraction, Hirshfeld surface analysis, and TG-DSC measurements. The regulation and control of the various solid forms were achieved through solid-state transformations (SSTs) and solution-mediated phase transformations (SMPTs). Our findings shows that the nylon 512 salt exists in two crystal forms (anhydrate and dihydrate) and four morphologies (needle-like, plate-like, rod-like, and massive block crystal). Many factors will influence the formation of these solid forms, such as water activity, temperature, solvent, and ultrasonic physical fields. We can choose the right factors to regulate this as needed. On this basis, we studied the effects of different solid forms (crystal forms and morphologies) on the properties of the resulting polyamides prepared using direct solid-state polymerization (DSSP). The solid form of the salt had many effects on the polymer, including its structure, melting point, and mechanical properties. The polyamide obtained through DSSP of the anhydrate salt exhibited a higher melting point (204.22 °C) and greater elastic modulus (3.366 GPa) compared to that of the dihydrate salt, especially for the anhydrate salt of plate-like crystals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548595PMC
http://dx.doi.org/10.3390/polym16212953DOI Listing

Publication Analysis

Top Keywords

solid forms
24
crystal forms
12
forms
8
forms nylon
8
nylon 512
8
512 salt
8
forms morphologies
8
melting point
8
anhydrate salt
8
solid
7

Similar Publications

Article Synopsis
  • Researchers propose a new method for creating multiple shape memory polymers (SMPs) by mixing immiscible polymers under high pressure and shear, rather than traditional blending techniques.
  • This approach allows for nanoscale homogeneity (40-95 nm) in the blends, improving both shape memory and mechanical performance.
  • The study focused on a blend of polypropylene (PP) and polystyrene (PS), demonstrating that the processed blend achieves a strong triple shape memory effect with high shape fixation and recoverability, along with adjustable transition temperatures.
View Article and Find Full Text PDF

Formation and crystalline structure of spherulites from pea and high amylose maize starches.

Int J Biol Macromol

January 2025

Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA. Electronic address:

Starch spherulite is a unique form of resistant starch characterized by a spherical structure with crystalline lamellae that are radially oriented and may find applications in delivery of nutrients and bioactives to the lower gastrointestinal tract. Formation of starch spherulites generally requires heating to a high temperature followed by quenching and long crystallization time. The objectives of this study were to gain a deeper understanding of the factors influencing spherulite formation from pea starch (PS) and high-amylose maize starch (HAMS) and investigate if spherulites could be formed by a slow cooling rate and determine the crystalline structure and morphology of the spherulites formed.

View Article and Find Full Text PDF

Preparation and Mechanism Analysis of Boiling Resistance of the Fresh Alum-Free Sweet Potato Vermicelli Containing Gliadin Fractions.

Foods

January 2025

Tianjin Key Laboratory of Food Biotechnology, Institute of Collaborative Innovation in Great Health, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.

Alum, an essential additive in sweet potato vermicelli (SPV) production, is harmful to health. To eliminate the harm to the human body caused by alum in sweet potato vermicelli, and considering the different viscous properties of gliadin fractions, an experiment was performed to replace alum with gliadin fractions to enhance the boiling resistance of SPV in this study. The results showed that the longest boiling-resistant time of fresh SPV extended to 34.

View Article and Find Full Text PDF

Yolk and Casein Sequence Self-Assembly for Low-Oil Emulsion Gel and Its Application in Low-Fat Mayonnaise.

Foods

December 2024

National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.

High dietary fat food such as mayonnaise (70-80% oil content) can induce obesity and cardiovascular diseases, thus reducing their oil content is required. However, the development of low-fat mayonnaise is still a big challenge since reducing oil content will increase the fluidity, induce phase separation and decrease the stability of mayonnaise. Herein, we provide a novel strategy for developing yolk-casein-based low-fat mayonnaise (30% oil content) with a similar texture to commercial high-fat mayonnaise through post-acidification.

View Article and Find Full Text PDF

High-Strength Ultrafine-Grained Al-Mg-Si Alloys Exposed to Mechanical Alloying and Press-Forming: A Comparison with Cast Alloys.

Materials (Basel)

December 2024

Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China.

A high-strength Al-Mg-Si alloy was prepared using mechanical alloying (MA) combined with press-forming (PF) technology, achieving a strength of up to 715 MPa and a hardness of 173 HB. The microstructures were comparatively analyzed with conventional cast Al-Mg-Si alloys using XRD, TKD, and TEM. The XRD results showed that the full width at half maximum (FWHM) of the alloy prepared by MA+PF was significantly broadened and accompanied by a shift in the diffraction peak.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!