Pharmacologically targeting the STING pathway offers a novel approach to cancer immunotherapy. However, small-molecule STING agonists face challenges such as poor tumor accumulation, rapid clearance, and short-lived effects within the tumor microenvironment, thus limiting their therapeutic potential. To address the challenges of poor specificity and inadequate targeting of STING in breast cancer treatment, herein, we report the design and development of a targeted liposomal delivery system modified with the tumor-targeting peptide iRGD (iRGD-STING-PFP@liposomes). With LIFU irradiation, the liposomal system exploits acoustic cavitation, where gas nuclei form and collapse within the hydrophobic region of the liposome lipid bilayer (transient pore formation), which leads to significantly enhanced drug release. Transmission electron microscopy (TEM) was used to investigate the physicochemical properties of the targeted liposomes. Encapsulation efficiency and in vitro release were assessed using the dialysis bag method, while the effects of iRGD on liposome targeting were evaluated through laser confocal microscopy. The CCK-8 assay was used to investigate the toxicity and cell growth effects of this system on 4T1 breast cancer cells and HUVEC vascular endothelial cells. A subcutaneous breast cancer tumor model was established to evaluate the tumor-killing effects and therapeutic mechanism of the newly developed liposomes. The liposome carrier exhibited a regular morphology, with a particle size of 232.16 ± 19.82 nm, as indicated by dynamic light scattering (DLS), and demonstrated low toxicity to both HUVEC and 4T1 cells. With an encapsulation efficiency of 41.82 ± 5.67%, the carrier exhibited a slow release pattern in vitro after STING loading. Targeting results indicated that iRGD modification enhanced the system's ability to target 4T1 cells. The iRGD-STING-PFP@liposomes group demonstrated significant tumor growth inhibition in the subcutaneous breast cancer mouse model with effective activation of the immune system, resulting in the highest populations of matured dendritic cells (71.2 ± 5.4%), increased presentation of tumor-related antigens, promoted CD8+ T cell infiltration at the tumor site, and enhanced NK cell activity. : The iRGD-STING-PFP@liposomes targeted drug delivery system effectively targets breast cancer cells, providing a new strategy for breast cancer immunotherapy. These findings indicate that iRGD-STING-PFP@liposomes could successfully deliver STING agonists to tumor tissue, trigger the innate immune response, and may serve as a potential platform for targeted immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545222PMC
http://dx.doi.org/10.3390/cancers16213657DOI Listing

Publication Analysis

Top Keywords

breast cancer
28
cancer immunotherapy
12
cancer
8
targeting sting
8
sting agonists
8
challenges poor
8
delivery system
8
encapsulation efficiency
8
cancer cells
8
subcutaneous breast
8

Similar Publications

A common digestive system cancer with a dismal prognosis and a high death rate globally is breast cancer (BRCA). BRCA recurrence, metastasis, and medication resistance are all significantly impacted by cancer stem cells (CSCs). However, the relationship between CSCs and the tumor microenvironment in BRCA individuals remains unknown, and this information is critically needed.

View Article and Find Full Text PDF

Purpose: Age stratification influences the clinicopathological features and survival outcomes of breast cancer. We aimed to understand the effect of age on gene variants in young Chinese women with breast cancer compared with those from The Cancer Genome Atlas (TCGA).

Methods: Enrolled patients ≤ 40 years old (N = 370) underwent germline or somatic genetic testing using a 32-gene hereditary cancer panel at Fujian Union Hospital.

View Article and Find Full Text PDF

Purpose: There is an increasing incidence of young breast cancer (YBC) patients with uncertainty surrounding the factors and patterns that are contributing.

Methods: We obtained characteristics and survival data from 206,156 YBC patients (≤ 40 years of age) diagnosed between 2005 and 2019 from the National Cancer Database (NCDB). Patients were subdivided into two comparison groups based on year of diagnosis (2005-2009, Old vs.

View Article and Find Full Text PDF

Hydrogen sulfide (HS)-mediated protein S-sulfhydration has been shown to play critical roles in several diseases. Tumor-associated macrophages (TAMs) are the predominant population of immune cells present within solid tumor tissues, and they function to restrict antitumor immunity. However, no previous study has investigated the role of protein S-sulfhydration in TAM reprogramming in breast cancer (BC).

View Article and Find Full Text PDF

Background: Bilateral risk-reducing mastectomies (RRMs) have been proven to decrease the risk of breast cancer in patients at high risk owing to family history or having pathogenic genetic mutations. However, few resources with consolidated data have detailed the patient experience following surgery. This systematic review features patient-reported outcomes for patients with no breast cancer history in the year after their bilateral RRM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!