A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring Multilingual Large Language Models for Enhanced TNM Classification of Radiology Report in Lung Cancer Staging. | LitMetric

Background/objectives: This study aimed to investigate the accuracy of Tumor, Node, Metastasis (TNM) classification based on radiology reports using GPT3.5-turbo (GPT3.5) and the utility of multilingual large language models (LLMs) in both Japanese and English.

Methods: Utilizing GPT3.5, we developed a system to automatically generate TNM classifications from chest computed tomography reports for lung cancer and evaluate its performance. We statistically analyzed the impact of providing full or partial TNM definitions in both languages using a generalized linear mixed model.

Results: The highest accuracy was attained with full TNM definitions and radiology reports in English (M = 94%, N = 80%, T = 47%, and TNM combined = 36%). Providing definitions for each of the T, N, and M factors statistically improved their respective accuracies (T: odds ratio [OR] = 2.35, < 0.001; N: OR = 1.94, < 0.01; M: OR = 2.50, < 0.001). Japanese reports exhibited decreased N and M accuracies (N accuracy: OR = 0.74 and M accuracy: OR = 0.21).

Conclusions: This study underscores the potential of multilingual LLMs for automatic TNM classification in radiology reports. Even without additional model training, performance improvements were evident with the provided TNM definitions, indicating LLMs' relevance in radiology contexts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544964PMC
http://dx.doi.org/10.3390/cancers16213621DOI Listing

Publication Analysis

Top Keywords

tnm classification
12
radiology reports
12
tnm definitions
12
multilingual large
8
large language
8
language models
8
tnm
8
classification radiology
8
lung cancer
8
radiology
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!