Breast cancer is the most prevalent cancer among women globally, making early and accurate detection essential for effective treatment and improved survival rates. This paper presents a method designed to detect and localize breast cancer using deep learning, specifically convolutional neural networks. The approach classifies histological images of breast tissue as either tumor-positive or tumor-negative. We utilize several deep learning models, including a custom-built CNN, EfficientNet, ResNet50, VGG-16, VGG-19, and MobileNet. Fine-tuning was also applied to VGG-16, VGG-19, and MobileNet to enhance performance. Additionally, we introduce a novel deep learning model called MR_Net, aimed at providing a more accurate network for breast cancer detection and localization, potentially assisting clinicians in making informed decisions. This model could also accelerate the diagnostic process, enabling early detection of the disease. Furthermore, we propose a method for explainable predictions by generating heatmaps that highlight the regions within tissue images that the model focuses on when predicting a label, revealing the detection of benign, atypical, and malignant tumors. We evaluate both the quantitative and qualitative performance of MR_Net and the other models, also presenting explainable results that allow visualization of the tissue areas identified by the model as relevant to the presence of breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548292PMC
http://dx.doi.org/10.3390/s24217022DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
deep learning
12
cancer detection
8
detection localization
8
histological images
8
convolutional neural
8
neural networks
8
vgg-16 vgg-19
8
vgg-19 mobilenet
8
breast
6

Similar Publications

In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.

View Article and Find Full Text PDF

Aim: Dynamic cancer control is a current health system priority, yet methods for achieving it are lacking. This study aims to review the application of system dynamics modeling (SDM) on cancer control and evaluate the research quality.

Methods: Articles were searched in PubMed, Web of Science, and Scopus from the inception of the study to November 15th, 2023.

View Article and Find Full Text PDF

Detection of biomarkers of breast cancer incurs additional costs and tissue burden. We propose a deep learning-based algorithm (BBMIL) to predict classical biomarkers, immunotherapy-associated gene signatures, and prognosis-associated subtypes directly from hematoxylin and eosin stained histopathology images. BBMIL showed the best performance among comparative algorithms on the prediction of classical biomarkers, immunotherapy related gene signatures, and subtypes.

View Article and Find Full Text PDF

Sarcopenia as a Prognostic Factor and Multimodal Interventions in Breast Cancer.

Int J Gen Med

December 2024

Department of Thyroid and Breast Surgery, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China.

Objective: This study aims to demonstrate the impact of sarcopenia on the prognosis of early breast cancer and its role in early multimodal intervention.

Methods: The clinical data of patients (n=285) subjected to chemotherapy for early-stage breast cancer diagnosed pathologically between January 1, 2016, and December 31, 2020, in our hospital were retrospectively analyzed. Accordingly, the recruited subjects were divided into sarcopenia (n=85) and non-sarcopenia (n=200) groups according to CT diagnosis correlating with single-factor and multifactorial logistic regression analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!