Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the era of digital music proliferation, music genre classification has become a crucial task in music information retrieval. This paper proposes a novel channel-aware convolutional neural network (ECAS-CNN) designed to enhance the efficiency and accuracy of music genre recognition. By integrating an adaptive channel attention mechanism (ECA module) within the convolutional layers, the network significantly improves the extraction of key musical features. Extensive experiments were conducted on the GTZAN dataset, comparing the proposed ECAS-CNN with traditional convolutional neural networks. The results demonstrate that ECAS-CNN outperforms conventional methods across various performance metrics, including accuracy, precision, recall, and F1-score, particularly in handling complex musical features. This study validates the potential of ECAS-CNN in the domain of music genre classification and offers new insights for future research and applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548389 | PMC |
http://dx.doi.org/10.3390/s24217021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!