Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A Fresnel mirror is introduced at a hollow-core photonic bandgap fiber end by fusion splicing a short single-mode fiber segment, to reflect the light backward to an optical frequency domain reflectometry. The backward Fresnel reflection is used as a probe light to achieve light speed measurement with a high resolution and a high signal-to-noise ratio. Thus, its group velocity is obtained with the round-trip time delay as well as the beat frequency at the reflection peak. Multiple Fresnel peaks are observed from 2180.00 Hz to 13,988.75 Hz, corresponding to fusion-spliced hollow-core fiber segments with different lengths from 0.2595 m to 1.6678 m, respectively. The speed of light in the air guidance is calculated at 2.9753 × 10 m/s, approaching that in vacuum, which is also in good agreement with 2.9672 × 10 m/s given by the numerical analysis with an uncertainty of 10. Our demonstration promises a key to hollow-core waveguide characterization for future wide-bandwidth and low-latency optical communication.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548225 | PMC |
http://dx.doi.org/10.3390/s24216954 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!