A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

YOLO-DHGC: Small Object Detection Using Two-Stream Structure with Dense Connections. | LitMetric

YOLO-DHGC: Small Object Detection Using Two-Stream Structure with Dense Connections.

Sensors (Basel)

School of Electrical Engineering and Automation, Xiamen University of Technology, Xiamen 361024, China.

Published: October 2024

Small object detection, which is frequently applied in defect detection, medical imaging, and security surveillance, often suffers from low accuracy due to limited feature information and blurred details. This paper proposes a small object detection method named YOLO-DHGC, which employs a two-stream structure with dense connections. Firstly, a novel backbone network, DenseHRNet, is introduced. It innovatively combines a dense connection mechanism with high-resolution feature map branches, effectively enhancing feature reuse and cross-layer fusion, thereby obtaining high-level semantic information from the image. Secondly, a two-stream structure based on an edge-gated branch is designed. It uses higher-level information from the regular detection stream to eliminate irrelevant interference remaining in the early processing stages of the edge-gated stream, allowing it to focus on processing information related to shape boundaries and accurately capture the morphological features of small objects. To assess the effectiveness of the proposed YOLO-DHGC method, we conducted experiments on several public datasets and a self-constructed dataset. Exceptionally, a defect detection accuracy of 96.3% was achieved on the Market-PCB public dataset, demonstrating the effectiveness of our method in detecting small object defects for industrial applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548390PMC
http://dx.doi.org/10.3390/s24216902DOI Listing

Publication Analysis

Top Keywords

small object
16
object detection
12
two-stream structure
12
structure dense
8
dense connections
8
defect detection
8
detection
6
yolo-dhgc small
4
object
4
detection two-stream
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!