A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multi-UAV Escape Target Search: A Multi-Agent Reinforcement Learning Method. | LitMetric

Multi-UAV Escape Target Search: A Multi-Agent Reinforcement Learning Method.

Sensors (Basel)

College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China.

Published: October 2024

The multi-UAV target search problem is crucial in the field of autonomous Unmanned Aerial Vehicle (UAV) decision-making. The algorithm design of Multi-Agent Reinforcement Learning (MARL) methods has become integral to research on multi-UAV target search owing to its adaptability to the rapid online decision-making required by UAVs in complex, uncertain environments. In non-cooperative target search scenarios, targets may have the ability to escape. Target probability maps are used in many studies to characterize the likelihood of a target's existence, guiding the UAV to efficiently explore the task area and locate the target more quickly. However, the escape behavior of the target causes the target probability map to deviate from the actual target's position, thereby reducing its effectiveness in measuring the target's probability of existence and diminishing the efficiency of the UAV search. This paper investigates the multi-UAV target search problem in scenarios involving static obstacles and dynamic escape targets, modeling the problem within the framework of decentralized partially observable Markov decision process. Based on this model, a spatio-temporal efficient exploration network and a global convolutional local ascent mechanism are proposed. Subsequently, we introduce a multi-UAV Escape Target Search algorithm based on MAPPO (ETS-MAPPO) for addressing the escape target search difficulty problem. Simulation results demonstrate that the ETS-MAPPO algorithm outperforms five classic MARL algorithms in terms of the number of target searches, area coverage rate, and other metrics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548590PMC
http://dx.doi.org/10.3390/s24216859DOI Listing

Publication Analysis

Top Keywords

target search
28
escape target
16
target
12
multi-uav target
12
multi-uav escape
8
search
8
multi-agent reinforcement
8
reinforcement learning
8
search problem
8
target probability
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!