A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dexterous Manipulation Based on Object Recognition and Accurate Pose Estimation Using RGB-D Data. | LitMetric

Dexterous Manipulation Based on Object Recognition and Accurate Pose Estimation Using RGB-D Data.

Sensors (Basel)

Graduate School of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu, Fukushima 965-0006, Japan.

Published: October 2024

This study presents an integrated system for object recognition, six-degrees-of-freedom pose estimation, and dexterous manipulation using a JACO robotic arm with an Intel RealSense D435 camera. This system is designed to automate the manipulation of industrial valves by capturing point clouds (PCs) from multiple perspectives to improve the accuracy of pose estimation. The object recognition module includes scene segmentation, geometric primitives recognition, model recognition, and a color-based clustering and integration approach enhanced by a dynamic cluster merging algorithm. Pose estimation is achieved using the random sample consensus algorithm, which predicts position and orientation. The system was tested within a 60° field of view, which extended in all directions in front of the object. The experimental results show that the system performs reliably within acceptable error thresholds for both position and orientation when the objects are within a ±15° range of the camera's direct view. However, errors increased with more extreme object orientations and distances, particularly when estimating the orientation of ball valves. A zone-based dexterous manipulation strategy was developed to overcome these challenges, where the system adjusts the camera position for optimal conditions. This approach mitigates larger errors in difficult scenarios, enhancing overall system reliability. The key contributions of this research include a novel method for improving object recognition and pose estimation, a technique for increasing the accuracy of pose estimation, and the development of a robot motion model for dexterous manipulation in industrial settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548730PMC
http://dx.doi.org/10.3390/s24216823DOI Listing

Publication Analysis

Top Keywords

pose estimation
24
dexterous manipulation
16
object recognition
16
manipulation industrial
8
accuracy pose
8
position orientation
8
object
6
recognition
6
pose
6
estimation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!