This study aimed to investigate the effects of high-intensity running on the autonomic nervous system and sleep quality of male long-distance runners and to examine the impact of wearing magnetic garments on these parameters. Fifteen highly trained male collegiate long-distance runners participated in a randomized, double-blind crossover study. Participants completed two 30 km runs (30k-RUN) during a 10-day training camp. After each run, they wore either magnetic (MAG) or non-magnetic control (CTRL) garments. Sleep quality and heart rate variability (HRV) were assessed using a wrist-worn device before and after each 30k-RUN. Wearing MAG garments post-30k-RUN resulted in significantly longer deep sleep duration compared to CTRL. HRV analysis revealed that the MAG condition led to a significantly higher root mean square of successive RR interval differences and high-frequency power, indicating enhanced parasympathetic activity. The low-frequency to high-frequency ratio was significantly lower in MAG than in CTRL. Perceived recovery scores were significantly higher in MAG than in CTRL. The findings of this study suggest that wearing magnetic garments following high-intensity endurance running may promote parasympathetic dominance and improve sleep quality in male long-distance runners. These findings indicate that magnetic garments may be a practical method for enhancing recovery in athletes following intense training.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548770PMC
http://dx.doi.org/10.3390/s24216820DOI Listing

Publication Analysis

Top Keywords

magnetic garments
16
sleep quality
16
long-distance runners
16
quality male
12
male long-distance
12
promote parasympathetic
8
parasympathetic dominance
8
dominance improve
8
improve sleep
8
wearing magnetic
8

Similar Publications

Study on structural alterations and degradation mechanism of lignin from ozone treated scutched flax tow (SFT).

Int J Biol Macromol

December 2024

Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

Article Synopsis
  • Ozone is effective in extracting lignocellulosic fibers due to its selectivity for lignin, but the mechanism of lignin degradation during this process is not well understood.
  • Researchers examined the structural changes in milled wood lignin from scutched flax tow before and after ozone treatment using various analytical techniques.
  • The study found that ozone treatment damaged specific lignin linkages and converted S-type lignin units into G-type units, offering important insights into the delignification process in lignocellulosic fiber extraction.
View Article and Find Full Text PDF

Poor selectivity to tumor cells is a major drawback in the clinical application of the antitumor drug docetaxel (DTX). Peptide-drug conjugates (PDCs) constructed by modifying antitumor drugs with peptide ligands that have high affinity to certain overexpressed receptors in tumor cells are increasingly assessed for their possibility of tumor-selective drug delivery. In the present research, DTX is condensed with 3-(pyridin-2-yldisulfanyl) propanoic acid via ester bond to obtain the intermediate Py-SS-DTX.

View Article and Find Full Text PDF

Bacillus xiamenensis Inhibits the Growth of Moraxella osloensis by Producing Indole-3-Carboxaldehyde.

Microbiologyopen

December 2024

Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan.

Moraxella osloensis, a gram-negative rod-shaped bacterium found on human skin, produces 4-methyl-3-hexenoic acid, contributing to clothing and body malodor. M. osloensis is resistant to UV light, drying, and antimicrobials, making its eradication challenging.

View Article and Find Full Text PDF

Bioinspired Tilted Magnetized Flakes as a Self-Powered and Antislip Smart Outsole for Healthcare Monitoring and Human-Machine Interaction.

ACS Appl Mater Interfaces

November 2024

Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, Hunan 410083, China.

Footwear smart devices capable of reliably capturing body actions and conveniently transmitting human-made information are of great interest to advance healthcare monitoring, human-machine interactions (HMIs), etc. while remaining challenging. Herein, we present a self-powered, antislip, and multifunctional smart outsole based on the gecko toe-inspired tilted magnetized flakes (TMFs) and underlying flexible coils.

View Article and Find Full Text PDF

This study aimed to investigate the effects of high-intensity running on the autonomic nervous system and sleep quality of male long-distance runners and to examine the impact of wearing magnetic garments on these parameters. Fifteen highly trained male collegiate long-distance runners participated in a randomized, double-blind crossover study. Participants completed two 30 km runs (30k-RUN) during a 10-day training camp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!