The proliferation of smart devices increases the demand for energy-efficient, battery-free technologies essential for sustaining IoT devices in Industry 4.0 and 5G networks, which require zero maintenance and sustainable operation. Integrating radio frequency (RF) energy harvesting with IoT and 5G technologies enables real-time data acquisition, reduces maintenance costs, and enhances productivity, supporting a carbon-free future. This survey reviews the challenges and advancements in RF energy harvesting, focusing on far-field wireless power transfer and powering low-energy devices. It examines miniaturization, circular polarization, fabrication challenges, and efficiency using the metamaterial-inspired antenna, concentrating on improving diode nonlinearity design. This study analyzes key components such as rectifiers, impedance matching networks, and antennas, and evaluates their applications in biomedical and IoT devices. The review concludes with future directions to increase bandwidth, improve power conversion efficiency, and optimize RF energy harvesting system designs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548119PMC
http://dx.doi.org/10.3390/s24216804DOI Listing

Publication Analysis

Top Keywords

energy harvesting
16
radio frequency
8
frequency energy
8
iot devices
8
advancements challenges
4
challenges antenna
4
antenna design
4
design rectifying
4
rectifying circuits
4
circuits radio
4

Similar Publications

αβT cells protect vertebrates against many diseases, optimizing surveillance using mechanical force to distinguish between pathophysiologic cellular alterations and normal self-constituents. The multi-subunit αβT-cell receptor (TCR) operates outside of thermal equilibrium, harvesting energy via physical forces generated by T-cell motility and actin-myosin machinery. When a peptide-bound major histocompatibility complex molecule (pMHC) on an antigen presenting cell is ligated, the αβTCR on the T cell leverages force to form a catch bond, prolonging bond lifetime, and enhancing antigen discrimination.

View Article and Find Full Text PDF

Advancements in flexible biomechanical energy harvesting for smart health applications.

Chem Commun (Camb)

January 2025

Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.

Advancing flexible electronics enables timely smart health management and diagnostic interventions. However, current health electronics typically rely on replaceable batteries or external power sources, requiring direct contact with the human skin or organs. This setup often results in rigid and bulky devices, reducing user comfort during long-term use.

View Article and Find Full Text PDF

Plasmonic semiconductors exhibit significant potential for harvesting near-IR solar energy, although their mechanisms of plasmon-induced hot electron transfer (HET) are poorly understood. We report a transient absorption study of plasmon-induced HET in p-CuS/CdS type II heterojunctions. Near-IR excitation of the p-CuS plasmon band at ∼1400 nm leads to ultrafast HET into the CdS conduction band with a time constant of <150 fs and a quantum efficiency of ∼0.

View Article and Find Full Text PDF

The specific ion effect (SIE), the control of polymer solubility in aqueous solutions by the added ions, has been a phenomenon known for more than a century. The seemingly simple nature of the ion-polymer-water interactions can lead to complex behaviors, which have also been exploited in many applications in biochemistry, electrochemistry, and energy harvesting. Here, we show an emerging diversification of actuation behaviors in "salty" hydrogel and hydrogel-paper actuators.

View Article and Find Full Text PDF

Materials and devices that harvest acoustic energy can enable autonomous powering of microdevices and wireless sensors. However, traditional acoustic energy harvesters rely on brittle piezoceramics, which have restricted their use in wearable electronic devices. To address these limitations, this study involves the fabrication of acoustic harvesters using electrospinning of the piezoelectric polymer PVDF-TrFE onto fabric-based electrodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!