Accurate temperature measurement is critical across various scientific and industrial applications, necessitating advancements in thermometry techniques. This study explores luminescence thermometry, specifically utilizing machine learning methodologies to enhance temperature sensitivity and accuracy. We investigate the performance of principal component analysis (PCA) on the Eu-doped YMoO luminescent probe, contrasting it with the traditional luminescence intensity ratio (LIR) method. By employing PCA to analyze the full emission spectra collected at varying temperatures, we achieve an average accuracy (ΔT) of 0.9 K and a resolution (δT) of 1.0 K, significantly outperforming the LIR method, which yielded an average accuracy of 2.3 K and a resolution of 2.9 K. Our findings demonstrate that while the LIR method offers a maximum sensitivity (Sr) of 5‱ K⁻ at 472 K, PCA's systematic approach enhances the reliability of temperature measurements, marking a crucial advancement in luminescence thermometry. This innovative approach not only enriches the dataset analysis but also sets a new standard for temperature measurement precision.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547480 | PMC |
http://dx.doi.org/10.3390/ma17215354 | DOI Listing |
Dalton Trans
January 2025
Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N6N5, Canada.
Lanthanide-based Single-Molecule Magnets (SMMs) with optical and magnetic properties provide a means to understand intrinsic energy levels of 4f ions and their influence on optical and magnetic behaviour. Fundamental understanding of their luminescent and slow relaxation of the magnetization behaviour is critical for targeting and designing SMMs with multiple functionalities. Herein, we seek to investigate the role of Dy coordination environment and fine electronic structure on the slow magnetic relaxation and luminescence thermometry.
View Article and Find Full Text PDFLuminescence
January 2025
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China.
Currently, the development of red Mn-activated fluoride luminescent materials attracts a lot of attention in optical thermometry sensors, solid lighting, display, and plant growth areas. Nevertheless, the thermal stability of Mn-activated fluoride luminescent materials is still a crucial issue. Herein, a new red RbNaVF:Mn luminescent material with outstanding thermal stability was successfully synthesized through the facial coprecipitation method.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Condensed Matter Physics, GdS Optronlab, LUCIA Building, University of Valladolid Paseo de Belén 19 47011 Valladolid Spain.
Luminescent materials doped with rare-earth (RE) ions have emerged as powerful tools in thermometry, offering high sensitivity and accuracy. However, challenges remain, particularly in maintaining efficient luminescence at elevated temperatures. This study investigates the thermometric properties of BiVO: Yb/Er (BVO: Er/Yb) nanophosphors synthesized the sol-gel method.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Physics, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala - 695 581, India.
Tuning the photophysical response is indispensable in realizing the full potential of phosphors to meet the demands of multifunctional applications, such as solid-state lighting and optical thermometry. Herein, orange-red emission from an Sm-based LiYTeO system was studied for the first time with CIE coordinates of (0.488, 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
Fluorescence thermometry based on metal halide perovskites is increasingly becoming a hotspot due to its advantages of high detection sensitivity, noninvasiveness, and fast response time. However, it still presents certain technical challenges in practical applications, such as complex synthesis methods, the use of toxic solvents, and being currently mainly based on the visible/first near-infrared light with poor penetration and severe autofluorescence. In this study, we synthesize the second near-infrared (NIR-II) luminescent crystals based on Yb/Nd-doped zero-dimensional CsScCl·HO by a simple "dissolve-dry" method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!