Investigation of the Softening Resistance Behavior and Its Mechanism in Cu-Ni-Si Alloys with Discontinuous Precipitates.

Materials (Basel)

State Key Laboratory of Nonferrous Metals and Processes, GRINM Group Co., Ltd., Beijing 100088, China.

Published: October 2024

AI Article Synopsis

  • The study examined isothermal annealing experiments on copper-nickel-silicon alloys to understand the impact of continuous (CP) and discontinuous (DP) precipitates on microstructural changes and softening temperatures during annealing.
  • Results showed that the CP alloy had a softening temperature of 505 °C after 75% cold deformation, while the DP alloy reached higher temperatures of 575 °C and 515 °C after 75% and 97.5% cold deformation, respectively, indicating better softening resistance for the DP alloy.
  • The enhanced durability of the DP alloy is explained by its unique microstructure, which effectively hinders dislocation and grain boundary motion, reducing recrystallization and maintaining

Article Abstract

In this study, isothermal annealing experiments were conducted on copper-nickel-silicon alloys containing continuous precipitates (CP) and discontinuous precipitates (DP) to investigate the effects of different types of precipitate phases on the microstructural evolution and softening temperature during annealing, as well as to analyze the differences in softening mechanisms. The experimental results revealed that the softening temperature of the CP alloy, subjected to 75% cold deformation, was 505 °C. In contrast, the DP alloy achieved softening temperatures of 575 °C and 515 °C after 75% and 97.5% cold deformation, respectively. This indicates that the DP alloy exhibits significantly superior softening resistance compared to the CP alloy, attributed to the distinct softening mechanisms of the two alloys. In the CP alloy, softening is primarily influenced by factors such as the coarsening of the precipitate phase, the occurrence of recrystallization, and the reduction in dislocation density. In the DP alloy, the balling phenomenon of the DP phase is more pronounced, and its unique microstructure exerts a stronger hindrance to dislocation and grain boundary motion. This hindrance effect reduces the extent of recrystallization and results in a smaller decrease in dislocation density. In summary, the DP alloy, due to its unique microstructure and softening mechanisms, demonstrates better softening resistance, providing higher durability and stability for high-temperature applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547177PMC
http://dx.doi.org/10.3390/ma17215323DOI Listing

Publication Analysis

Top Keywords

softening resistance
12
softening mechanisms
12
softening
9
discontinuous precipitates
8
softening temperature
8
cold deformation
8
dislocation density
8
unique microstructure
8
alloy
7
investigation softening
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!