Wood-plastic composites (WPCs) combine the properties of plastics and lignocellulosic fillers. A particular limitation in their use is usually a hydrophobic, poorly wettable surface. The surface properties of materials can be modified using ion implantation. The research involved using composites based on polyethylene (PE) filled with sawdust or bark (40%, 50%, and 60%). Their surfaces were modified by argon ion implantation in three fluencies (1 × 10, 1 × 10, and 1 × 10 cm) at an accelerating voltage of 60 kV. Changes in the wettability, surface energy, and surface colour of the WPCs were analysed. It was shown that argon ion implantation affects the distinct colour change in the WPC surface. The nature of the colour changes depends on the filler used. Implantation also affects the colour balance between the individual variants. Implantation of the WPC surface with argon ions resulted in a decrease in the wetting angle. In most of the variants tested, the most significant effect on the wetting angle changes was the ion fluence of 1 × 10 cm. Implantation of the WPC surface also increased the surface free energy of the composites. The highest surface free energy values were also recorded for the argon ion fluence of 1 × 10 cm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547569 | PMC |
http://dx.doi.org/10.3390/ma17215347 | DOI Listing |
Nanoscale Horiz
January 2025
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200438, P. R. China.
A porous hedgehog-like CoO/NiO/graphene oxide (denoted as PHCNO/GO) microsphere was prepared by a facile solvothermal method, followed by an annealing treatment under argon atmosphere. Benefiting from the thin CoO/NiO nanosheets with a large specific surface area, abundant pores distributed between the CoO/NiO nanosheets, and GO firmly wrapped around the surface of PHCNO microspheres, the PHCNO/GO microspheres showed excellent lithium storage performance. The CoO/NiO nanosheets provided numerous active sites, achieving a high reversible specific capacity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, Jinan University, Guangzhou, Guangdong 510632, P. R. China.
The solid electrolyte interphase (SEI) is considered to be the key to the performance of lithium metal batteries (LMBs). The analysis of the SEI and cathode electrolyte interphase (CEI) composition (especially F 1s spectra) by X-ray photoelectron spectroscopy (XPS) has become a consensus among researchers. However, the surface-sensitive XPS characterization is susceptible to LiF artifacts due to several factors, leading to the overexaggerated role of LiF in the analysis of the SEI and CEI.
View Article and Find Full Text PDFJ AOAC Int
January 2025
Thermo Fisher Scientific, 1214 Oakmead Parkway, Sunnyvale, CA, USA 94085.
Background: Per- and polyfluoroalkyl substances (PFAS) comprise thousands of fluorinated chemicals. They are of growing concern because many PFAS compounds are persistent and toxic. Food contact materials (FCM) containing PFAS pose multiple exposure pathways to humans, prompting twelve states to enact laws banning FCM with PFAS levels exceeding 100 ppm of TOF.
View Article and Find Full Text PDFThe introduction of intermediate bands by hyperdoping is an efficient way to realize infrared light absorption of silicon. In this Letter, inert element (helium and argon for specific)-doped black silicon is obtained by helium ion-implantation followed by femtosecond pulse laser irradiation in an argon atmosphere based on near-intrinsic silicon substrates. Within the 200 nm of the silicon surface, the concentrations of helium and argon are both above the order of 10 cm.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University Astana Kazakhstan
Sodium-ion batteries (SIBs) offer several advantages over traditional lithium-ion batteries, including a more uniform sodium distribution, lower-cost materials, and safer transportation options. A promising development in SIBs is the use of hard carbons as anode materials due to their low insertion voltage and larger interlayer spacing, which improve sodium-ion insertion. Traditionally, hard carbons are made from costly carbon sources, but recent advancements have focussed on using abundant bio-waste, like coffee grounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!