In this study, wettability was employed to evaluate the effect of alkali activation by NaOH on different fly ash (FA) particle sizes. The results indicated that the surface wettability of FA particles with 13.8 μm increased from 0.025 g/s to 0.034 g/s after activation by the NaOH solution, which is suitable for silane modification and electroless plating. X-ray photoelectron spectroscopy (XPS) was used to analyze whether three kinds of silane coupling agents coated on FA surfaces could detect the chemical bonds between silane coupling agents coated on the FA surface and silver layers by shortening the plating time. The XPS results demonstrated that N-Ag coordination bonds can be detected by reducing silver plating time to 2 min for Ag-plated FA modified by N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (KH792). However, there were no chemical bonds detected for Ag-plated FA modified by γ-(2,3-epoxypropoxy)propytrimethoxysilane (KH560) and methyltrimethoxysilane (MTMS), even when the satellite peak of Ag disappeared after plating for 80 s. The SEM showed that Ag particles agglomerated on FA surfaces, and even a bare surface was found after modification by KH560 and MTMS, which further proved no chemical bonds between silver layers and the silane coupling agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548042PMC
http://dx.doi.org/10.3390/ma17215322DOI Listing

Publication Analysis

Top Keywords

silane coupling
16
coupling agents
12
chemical bonds
12
fly ash
8
activation naoh
8
agents coated
8
silver layers
8
plating time
8
bonds detected
8
ag-plated modified
8

Similar Publications

Lubrication surfaces reduce the risk of cross-contamination and enhance the long-term stability of medical devices, which holds significance in the realm of antifouling medical materials. However, the complexity of constructing micronano structures to immobilize lubricating fluids and the fluorine content typically found in silane coupling agents restrict their widespread adoption. In this study, we prepared a biomimetic lubricating coating (BLC) through the one-step self-assembly of octadecyltrichlorosilane and oil infusion.

View Article and Find Full Text PDF

A hybrid coating made of poly (methyl methacrylate) with SiO2-TiO2 particles (PMMA/SiO2-TiO2) has been developed for use as a coating on nanosatellites, evaluating its resistance to high vacuum by quantifying its weight loss. The coating was applied on an Al 7075 aluminum substrate used for the aerospace sector. PMMA/SiO2-TiO2 hybrid coatings were prepared using sol-gel reaction in situ assisted with sonochemistry.

View Article and Find Full Text PDF

Chemodivergent, enantio- and regioselective couplings of alkynes, aldehydes and silanes enabled by nickel/N-heterocyclic carbene catalysis.

Sci Bull (Beijing)

December 2024

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:

Divergent synthesis of valuable molecules through common starting materials and metal catalysis represents a longstanding challenge and a significant research goal. We here describe chemodivergent, highly enantio- and regioselective nickel-catalyzed reductive and dehydrogenative coupling reactions of alkynes, aldehydes, and silanes. A single chiral Ni-based catalyst is leveraged to directly prepare three distinct enantioenriched products (silyl-protected trisubstituted chiral allylic alcohols, oxasilacyclopentenes, and silicon-stereogenic oxasilacyclopentenes) in a single chemical operation.

View Article and Find Full Text PDF

Polylactic acid (PLA) composites with high straw content face several challenges, primarily due to the inherent brittleness of straw and its poor compatibility with the polymer matrix. In this study, scanning electron microscopy (SEM) was used to analyze the microscopic structure of wheat straw chemically modified by NaOH and the silane coupling agent, and it was concluded that both treatments effectively removed waxes and silica from the surface of the straw, enhanced fiber roughness, and improved interfacial adhesion. Notably, the silane coupling agent treatment not only facilitated the formation of chemical bonds between the straw fibers and the PLA matrix but also filled the interfiber pores, significantly increasing the structural density.

View Article and Find Full Text PDF

Pd(0)/Pd(II) Electromerism Triggered by Lewis Base Coordination to a Redox-Active Silicon Z-Type Ligand.

Angew Chem Int Ed Engl

December 2024

Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.

Electromerism (aka. valence tautomerism) corresponds to the switching of electronic distributions between redox-active ligands and central elements. While this phenomenon is well established for several transition metals, the Pd(0)/Pd(II) couple could not yet be involved due to the high energy of the Pd(0) state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!