For more than a decade, the unusual distribution of electrons observed in ARPES (angle-resolved photoemission spectroscopy) data within the energy range of ~30 meV to ~300 meV below the Fermi level, known as the ARPES energy range, has remained a puzzle in the field of iron-based superconductivity. As the electron-phonon coupling of FeSe/SrTiO is very strong, our investigation is centered on exploring the synergistic interplay between spin-density waves (SDW) and charge-density waves (CDW) with differential phonons at the interface between antiferromagnetic maxima and minima under wave interference. Our analysis reveals that the synergistic energy is proportional to the ARPES energy range, as seen in the comparison between FeSe and FeSe/SrTiO. This finding may suggest that the instantaneous interplay between these intricate phenomena may play a role in triggering the observed energy range in ARPES.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547900 | PMC |
http://dx.doi.org/10.3390/ma17215204 | DOI Listing |
Sci Rep
January 2025
Radiological Techniques Department, College of Health and Medical Techniques, AL-Mustaqbal University, Hillah, Babil, 51001, Iraq.
This paper proposes a hybrid stochastic-robust optimization framework for sizing a photovoltaic/tidal/fuel cell (PV/TDL/FC) system to meet an annual educational building demand based on hydrogen storage via unscented transformation (UT), and information gap decision theory-based risk-averse strategy (IGDT-RA). The hybrid framework integrates the strengths of UT for scenario generation and IGDT-RA (hybrid UT-IGDT-RA) for optimizing the system robustness and maximum uncertainty radius (MRU) of building energy demand and renewable resource generation. The deterministic model focuses on minimizing the cost of energy production over the project's lifespan (CEPLS) and considers a reliability constraint defined as the demand shortage probability (DSHP).
View Article and Find Full Text PDFSci Rep
January 2025
Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China.
Strong light-matter coupling occurs when the rate of energy exchange between the electromagnetic mode and the molecular ensemble exceeds the competitive dissipation process. Coupled photon molecules with near-field light-matter interactions may produce new hybridized states when they reach the strong coupling region. Tunable Terahertz (THz) meta materials can be used to design sensors, optical modulators, etc.
View Article and Find Full Text PDFNat Commun
January 2025
Southwest Research Institute, San Antonio, TX, USA.
Collisionless shock waves, found in supernova remnants, interstellar, stellar, and planetary environments, and laboratories, are one of nature's most powerful particle accelerators. This study combines in situ satellite measurements with recent theoretical developments to establish a reinforced shock acceleration model for relativistic electrons. Our model incorporates transient structures, wave-particle interactions, and variable stellar wind conditions, operating collectively in a multiscale set of processes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea.
Advances in the semiconductor industry have been limited owing to the constraints imposed by silicon-based CMOS technology; hence, innovative device design approaches are necessary. This study focuses on "more than Moore" approaches, specifically in neuromorphic computing. Although MoS devices have attracted attention as neuromorphic computing candidates, their performances have been limited due to environment-induced perturbations to carrier dynamics and the formation of defect states.
View Article and Find Full Text PDFJ Mol Graph Model
January 2025
Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, India. Electronic address:
This study investigates the interaction of a synthetic bio-relevant molecule with C and BN nanorings, exploring their potential applications in sensing and drug delivery. Employing Density Functional Theory (DFT) at the ωB97XD level with the 6-31G(d,p) basis set, we computed the adsorption and electronic properties of the resulting nanocomplexes. A total of ten distinct configurations were identified for the interactions, with adsorption energies ranging from -6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!