Carbon-based electrodes have recently been most widely used in P-MFC due to their desirable properties such as biocompatibility, chemical stability, affordable price, corrosion resistance, and ease of regeneration. In general, carbon-based electrodes, particularly graphite, are produced using a complex process based on petroleum derivatives at very high temperatures. This study aims to produce electrodes from bio-pitch and charcoal powder as an alternative to graphite electrodes. The carbons used to manufacture the electrodes were obtained by the carbonisation of and wood. These carbons were pulverised, sieved to 50 µm, and used as the raw materials for electrode manufacturing. The binder used was bio-pitch derived from coconut shells as the raw materials. The density and coking value of the bio-pitch revealed its potential as a good alternative to coal-tar pitch for electrode manufacturing. The electrodes were made by mixing 66.50% of each carbon powder and 33.50% of bio-pitch. The resulting mixture was moulded into a cylindrical tube 8 mm in diameter and 80 mm in length. The raw electrodes obtained were subjected to heat treatment at 800 °C or 1000 °C in an inert medium. The electrical resistivity obtained by the four-point method showed that N1000 has an electrical resistivity at least five times lower than all the electrodes developed and two times higher than that of G. Fourier-transform infrared spectroscopy (FTIR) was used to determine the compositional features of the samples and their surface roughness was characterised by atomic force microscopy (AFM). Charge transfer was determined by electrical impedance spectroscopy (EIS). The FTIR of the electrodes showed that N1000 has a spectrum that is more similar to that of G compared to the others. The EIS showed the high ionic mobility of the ions and therefore that N1000 has a higher charge transfer compared to G and the others. AFM analysis revealed that N1000 had the highest surface roughness in this study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11546863 | PMC |
http://dx.doi.org/10.3390/ma17215156 | DOI Listing |
Addressing the pressing need to develop affordable and efficient catalysts is essential. In this study, we successfully synthesized CuBiS nanostructures with a modified morphology using three different nitrogen bases: DBN, DBU, and DABCO a hydrothermal technique. These nanostructures were used for the electrochemical detection of organic nitro groups, a previously unexplored application for this material.
View Article and Find Full Text PDFChem Sci
December 2024
State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology Beijing 100029 China
The shelf life of 2D MXenes in functional devices and colloidal dispersions is compromised due to oxidation in the aqueous system. Herein, a systematic investigation was carried out to explore the potential of various amino compounds as antioxidants for TiCT MXenes. A range of basic, acidic, and neutral amino acids were examined for their effectiveness, where certain antioxidants failed to protect MXenes from oxidation, while others accelerated their decomposition.
View Article and Find Full Text PDFHeliyon
December 2024
Ingeniería Electroquímica y Corrosión, Instituto Unversitario de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, C/Camino de Vera s/n, 46022, Valencia, Spain.
In this research work, four distinct WO electrodes were synthesized and coated with three different polymers, known as polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) in poly(4-styrenesulfonate) (PEDOT:PSS) and polyaniline (PANi), using electropolymerization techniques. The morphological features of the samples were thoroughly characterized through Field Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscopy (AFM) analyses. Additionally, contact angle measurements and electrochemical characterizations were used to verify the performance of each electrode, aiding in the prediction of their suitability for energy storage applications in lithium-ion batteries.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Chemical, Biological & Battery Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
In this study, shell-derived cellulose was successfully produced, and the hydrothermal method was employed to generate ZnO@C (ZOC) composites, which were then subjected to calcination in N gas at a temperature of 600 °C for varying durations. X-ray diffraction and thermogravimetric analyses demonstrated that the annealing duration had a substantial impact on the quantities of C and ZnO in the ZOC composites. The scanning electron microscope images indicated the presence of ZnO nanoparticles on the surface of the C phase and revealed a similar morphology among the ZOC composites.
View Article and Find Full Text PDFHeliyon
December 2024
Radiation Fusion Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.
Electrode material capacities and cycle performances must improve for large-scale applications such as energy storage systems. Numerous investigations have developed cathode materials to improve lithium-ion batteries (LIBs) performance: however, few have examined new anode materials. In this study, we synthesized a Ni-B/reduced graphene oxide (RGO) composites via a simple chemical reaction method to enhance the stability of electrodes in LIBs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!