Bee pollen is recognized as a superfood due to its high content of nutrients and bioactive compounds. However, its bioavailability is restricted by a degradation-resistant outer layer known as exine. Physical and biotechnological techniques have recently been developed to degrade this layer and improve pollen's nutritional and functional profile. This review examines how processing methods such as fermentation, enzymatic hydrolysis, ultrasound, and drying affect pollen's chemical profile, nutrient content, and bioactive compounds. The review also considers changes in exine structure and possible synergistic effects between these methods. In addition, the challenges associated with the commercialization of processed bee pollen are examined, including issues such as product standardization, stability during storage, and market acceptance. The objective was to provide an understanding of the efficacy of these techniques, their physicochemical conditions, and their effect on the nutritional value of the pollen. The work also analyzes whether pollen transformation is necessary to maximize its benefits and offers conclusions based on the analysis of available methods, helping to determine whether pollen transformation is a valid strategy for inclusion in functional foods and its impact on consumer health. Although the literature reports that pollen transformation influences its final quality, further studies are needed to demonstrate the need for pollen exine modification, which could lead to greater market availability of pollen-based products with functional properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544882 | PMC |
http://dx.doi.org/10.3390/foods13213437 | DOI Listing |
Food Sci Nutr
January 2025
Department of Postharvest, Supply Chain, Commerce and Sensory Science, Institute of Food Science and Technology Hungarian University of Agriculture and Life Sciences Budapest Hungary.
The volatile profile of bee pollen samples from Central and Eastern Europe was investigated by headspace solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry-olfactometry (GC-MS-O). Sampling conditions were optimized for the extraction of volatiles. Pollen odorants were extracted with six different fiber coatings, five various extraction times, three diverse extraction temperatures and three differing desorption times.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Laboratory Technology Program Artvin Vocational School, Artvin Çoruh University Artvin Türkiye.
Honey is a natural product gathered by honeybees from the pollen and nectar of various plants and flowers. The homeland of the Caucasian honey bee, which draws attention with its honey production and is one of the most productive bee races known in the world, is Northeastern Anatolia in Türkiye. This study aims to determine and correlate the phenolic content and antioxidant activity of 54 honey samples obtained from the most important gene centers of the Caucasian bee in Türkiye.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
Recently, it has been shown that sugar‑conditioned honey bees can be biased towards a nectarless dioecious crop as kiwifruit. The challenges for an efficient pollination service in this crop species are its nectarless flowers and its short blooming period. It is known that combined non-sugar compounds (NSCs) present in the floral products of different plants, such as caffeine and arginine, enhance olfactory memory retention in honey bees.
View Article and Find Full Text PDFJ Econ Entomol
December 2024
Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology IFA-Tulln, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria.
Pollination by insects is vital for global agriculture, with honey bees (Apis mellifera L.) being the most important pollinators. Honey bees are exposed to numerous stressors, including disease, pesticides, and inadequate nutrition, resulting in significant colony losses.
View Article and Find Full Text PDFToxics
November 2024
Institute of Plant Protection Research 'Agrihorts', Latvia University of Life Sciences and Technologies, 2 Paula Lejiņa Street, LV-3004 Jelgava, Latvia.
The honey bee () is the most widely managed pollinator and is vital for crop fertilization. Recently, bee colonies have been suffering high mortality rates, exacerbated by factors such as land-use changes and the use of pesticides. Our work aimed to explore the residues of pesticides in honey-bee-collected pollen and how this contamination was affected by seasonality and the landscape composition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!