A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Detection of Tert-Butylhydroquinone in Edible Oils Using an Electrochemical Sensor Based on a Nickel-Aluminum Layered Double Hydroxide@Carbon Spheres-Derived Carbon Composite. | LitMetric

AI Article Synopsis

  • - Phenolic antioxidants like tert-butylhydroquinone (TBHQ) are used to extend the shelf life of edible oils, but excessive amounts can harm food quality and health, highlighting the need for effective TBHQ detection methods.
  • - Researchers synthesized a new material called NiAl-LDH@GC-800 by growing nickel-aluminum double hydroxide on glucose carbon spheres and then pyrolyzing it at 800 °C, confirming its structure through various microscopy and spectroscopy techniques.
  • - This new material was used to create an electrochemical sensor for TBHQ that demonstrated high sensitivity and a low detection limit, successfully testing TBHQ levels in different edible oils like chili, peanut, and rapeseed oil.

Article Abstract

Phenolic antioxidants such as tert-butylhydroquinone (TBHQ) can prolong the shelf life of edible oils by delaying the oxidation process. The excessive use of TBHQ can damage food quality and public health, so it is necessary to develop an efficient TBHQ detection technique. In this work, nickel-aluminum double hydroxide (NiAl-LDH) was grown on glucose carbon spheres (GC), which formed porous carbon nanomaterials (named NiAl-LDH@GC-800) after pyrolysis at 800 °C. The successful synthesis of the material was verified by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The obtained NiAl-LDH@GC-800 was dopped onto a glass carbon electrode to prepare an electrochemical sensor for TBHQ. The synergistic effect of porous carbon and Ni metal reduced from NiAl-LDH by high-temperature calcination accelerated the electron transfer rate and improved the sensitivity of the sensor. The prepared sensor showed a low limit of detection (LOD) of 8.2 nM, a high sensitivity (4.2 A·M), and a good linear range (20~300 µM) in detecting TBHQ. The sensor was also successfully used for TBHQ detection in edible oils, including chili oil, peanut oil, and rapeseed oil.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545052PMC
http://dx.doi.org/10.3390/foods13213431DOI Listing

Publication Analysis

Top Keywords

edible oils
12
electrochemical sensor
8
tbhq detection
8
porous carbon
8
sensor tbhq
8
tbhq
6
sensor
5
carbon
5
detection
4
detection tert-butylhydroquinone
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!