In China, the processing of prickly ash (PA) produces a large number of by-products, including prickly ash seeds (PASs), which are rich in bioactive components such as flavonoids and phenolic compounds, and which may have an important influence on meat quality and muscle metabolites. Therefore, this study aimed to assess the impact of dietary PAS supplementation on the meat quality, antioxidant activity, and metabolite characteristics of lambs. Eighteen 3-month-old Hu lambs (25.66 ± 3.03 kg body weight) were randomly allotted to three different dietary treatment groups. In the three dietary treatments, 0% (basal diet, CON), 3% (CON with 3% PAS, low-dose PAS, and LPS), and 6% (CON with 6% PAS, high-dose PAS, and HPS) PASs were used. Results indicated significant improvements in the HPS group, including reduced cooking loss and increased fat content. The L* and b* 45 min values were significantly lower in the PAS groups than those in the CON group ( < 0.05). Additionally, dietary PAS supplementation increased in MUFA, PUFA, n-3 PUFA, PUFA/MUFA ratio, NEAA, and FFA compared to the CON group. Furthermore, PAS supplementation significantly improved serum and muscle antioxidant capacity. Metabolomic analyses revealed that increased metabolites, such as tryptophan, leucine, citric acid, adenosine 5'-triphosphate, creatine phosphate, inosine, and purine metabolism pathways. Notably, supplementation with 6% of PASs exhibited the most prominent effect on lamb meat quality in this study. Therefore, the application of PASs as a feed component in lamb production can not only improve meat quality and muscle antioxidant capacity but also save feed costs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545103 | PMC |
http://dx.doi.org/10.3390/foods13213415 | DOI Listing |
Cells
January 2025
Chongqing Academy of Animal Science, Chongqing 402460, China.
Porcine latissimus dorsi muscle (LDM) is a crucial source of pork products. Meat quality indicators, such as the proportion of muscle fibers and intramuscular fat (IMF) deposition, vary during the growth and development of pigs. Numerous studies have highlighted the heterogeneous nature of skeletal muscle, with phenotypic differences reflecting variations in cellular composition and transcriptional profiles.
View Article and Find Full Text PDFAnim Sci J
January 2025
Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China.
The Citri Reticulatae Pericarpium (CRP), is the aged peel of Citrus fruit, which contains phenols, flavonoids, and polysaccharides. This study aims to investigate dietary CRP supplementation on the growth performance, serum biochemical indices, meat quality, intestinal morphology, microbiota, and metabolite of yellow-feathered broilers. A total of 240 yellow-feathered broilers (1.
View Article and Find Full Text PDFJ Anim Sci Biotechnol
January 2025
College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
Background: The objective of this study was to evaluate the effects of dietary fatty acids (FA) saturation and lysophospholipids supplementation on growth, meat quality, oxidative stability, FA profiles, and lipid metabolism of finishing beef bulls. Thirty-two Angus bulls (initial body weight: 623 ± 22.6 kg; 21 ± 0.
View Article and Find Full Text PDFSci Rep
January 2025
College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
The Wannan black pig is a superior local breed in Anhui province, renowned for its exceptional meat quality and remarkable adaptability to various environmental conditions. Semen, being a crucial indicator of male sexual maturity and fertility, significantly influences the performance of breeding boars. The molecular basis for comprehending the fecundity of boars in practical production lies in understanding the disparities in sperm proteins among boars of varying ages.
View Article and Find Full Text PDFFood Chem
January 2025
Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan, Ningxia 755299, China. Electronic address:
Multifunctional pH-responsive films were fabricated via layer-by-layer deposition of gelatin, chitosan, and carboxymethyl cellulose (CMC), incorporating selenium nanoparticles (SeNPs) and beetroot extract (BTE), to monitor and preserve beef freshness. SeNPs were synthesized and characterized via various techniques. BTE exhibited promising functional properties, and films demonstrated a significant color transition from red to yellow across pH 2-14.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!