A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancing low-dose radiotherapy efficacy with PARP inhibitors via FBL-mediated oxidative stress response in colorectal cancer. | LitMetric

The effectiveness of radiotherapy in colorectal cancer (CRC) relies on its ability to induce cell death via the generation of reactive oxygen species (ROS). However, genes responsible for mitigating oxidative stress can impede radiotherapy's efficacy. In this study, we elucidate a significant association between the nucleolar protein Fibrillarin (FBL) and the oxidative stress response in CRC tumors. Our findings reveal elevated expression of FBL in colorectal cancer, which positively correlates with oxidative stress levels. Mechanistically, FBL demonstrates direct accumulation at DNA damage sites under the regulation of PARP1. Specifically, the N-terminal GAR domain of FBL is susceptible to PARylation by PARP1, enabling FBL to recognize PARylated proteins. The accumulation of damaged FBL plays a pivotal role in facilitating short-patched base excision repair by recruiting Ligase III and disassociating PCNA and FEN1. Moreover, tumors with heightened FBL expression exhibit reduced DNA damage levels but increased sensitivity to combined low-dose radiotherapy and olaparib treatment. This underscores the potential of leveraging PARP inhibitors to augment radiotherapy sensitivity in CRC cases characterized by elevated FBL expression, offering a promising therapeutic avenue.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41388-024-03207-wDOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
colorectal cancer
12
low-dose radiotherapy
8
parp inhibitors
8
stress response
8
fbl
8
dna damage
8
fbl expression
8
enhancing low-dose
4
radiotherapy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!