Background: Most tyrosine kinase inhibitors (TKIs) have failed in clinical trials for metastatic colorectal cancer (mCRC). To leverage the additional lower-affinity targets that most TKIs have, high-dose regimens that trigger efficacy are explored. Here, we studied unprecedented drug exposure-response relationships in vitro using mCRC patient-derived tumour organoids (PDTOs).
Methods: We investigated the cytotoxic anti-tumour effect of high-dose, short-term (HDST) TKI treatment on 5 PDTOs. Sunitinib, cediranib and osimertinib were selected based on favourable physicochemical and pharmacokinetic properties. Intra-tumoroid TKI concentrations were measured using a clinically validated LC/MS-MS method. Cell death was determined using an enzyme activity assay, immunofluorescent staining and western blotting.
Results: Most PDTOs tested were sensitive to sunitinib and cediranib, but all to osimertinib. Furthermore, HDST osimertinib treatment effectively blocks organoid growth. This treatment led to markedly elevated intra-tumoroid TKI concentrations, which correlated with PDTO sensitivity. Mechanistically, HDST osimertinib treatment induced apoptosis in treated PDTOs.
Conclusion: Our work provides a better understanding of TKI exposure vs response and can be used to determine patient-specific sensitivity. Additionally, these results may guide both mechanistic elucidation in organotypic translational models and the translation of target drug exposure to clinical dosing strategies. Moreover, HDST osimertinib treatment warrants clinical exploration for mCRC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523998 | PMC |
http://dx.doi.org/10.1038/s44276-024-00042-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!