A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Variable viscosity and activation energy aspects in convection heat transfer over gravity driven solar collector plate for thermal energy storage. | LitMetric

AI Article Synopsis

  • This research explores how variable viscosity, activation energy, and microgravity affect the performance of Darcy nanofluid in improving thermal energy storage (TES) via solar collectors.
  • The study emphasizes that using nanofluid can enhance heat and mass transfer in TES applications, which include heat exchangers and solar power systems, especially when combined with solar radiation and phase change materials.
  • A mathematical model is developed to simulate oscillating heat transfer in TES, revealing that lower viscosity increases fluid velocity while higher activation energy and microgravity lead to better thermal and mass transfer efficiencies.

Article Abstract

Variable viscosity, activation energy and microgravity effects on Darcy nanofluid for the thermal performance improvement in thermal energy storage systems through stretching flat plate solar collector is the focus of this research. Thermal energy storage (TES) can be improved though solar collectors, phase change materials and photovoltaic cells using nanofluid in the base liquid. To increase the reaction rate in nanoparticles, the activation energy and solar radiations are used for the efficiency of TES. The viscosity of nanofluid improves the heat and mass transmission. Due to solar radiations, nanofluid plays prominent role in TES applications such as heat exchangers, electronic cooling devices and solar power generation through solar plate collector. Solar energy based mathematical model is developed to execute the frequency of oscillating heat transfer in TES numerically. Primitive and Stokes coefficients are used for feasible programming. Finite difference analysis is performed to display oscillatory thermal energy using Gaussian-elimination matrix scheme. Steady velocity, surface temperature and concentrations are plotted and utilized in oscillatory formula to perform oscillatory skin friction, oscillatory heat transfer and oscillatory mass transfer along π⁄4 angle. Fluid velocity enhances but temperature and concentration variation decreases as viscosity decreases. High amplitude in velocity, temperature and concentration is sketched as activation energy and microgravity increases. Steady heat and mass transmission enhances as thermophoretic and Brownian motion enhances. Amplitude and frequency of oscillations in heat transport, skin friction and mass transport enhances as Prandtl and Schmidt component enhances. In validation of results, the 0.00064% percentage error for heat transport and 0.00102% percentage error for mass transmission are deduced.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549296PMC
http://dx.doi.org/10.1038/s41598-024-77715-wDOI Listing

Publication Analysis

Top Keywords

activation energy
16
thermal energy
16
heat transfer
12
energy storage
12
mass transmission
12
energy
9
variable viscosity
8
viscosity activation
8
heat
8
solar
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!