Storage rots are a significant cause of postharvest losses for the sugar beet crop, however, intrinsic physiological and genetic factors that determine the susceptibility of roots to pathogen infection and disease development are unknown. Research, therefore, was carried out to evaluate the disease development in sugar beet roots caused by two common storage pathogens as a function of storage duration and storage temperature, and to identify changes in the expression of defense genes that may be influencing the root susceptibility to disease. To evaluate root susceptibility to disease, freshly harvested roots were inoculated with Botrytis cinerea or Penicillium vulpinum on the day of harvest or after 12, 40, or 120 d storage at 5 or 12 °C and the weight of rotted tissue present in the roots after incubation for 35 d after inoculation were determined. Disease susceptibility and progression to B. cinerea and P. vulpinum increased with storage duration with elevations in susceptibility occurring more rapidly to B. cinerea than P. vulpinum. Also, B. cinerea was more aggressive than P. vulpinum and caused greater rotting and tissue damage in postharvest sugar beet roots. Storage temperature had minimal effect on root susceptibility to these rot-causing pathogens. Changes in defense gene expression were determined by sequencing mRNA isolated from uninoculated roots that were similarly stored for 12, 40 or 120 d at 5 or 12 °C. As susceptibility to rot increased during storage, concurrent changes in defense-related gene expression were identified, including the differential expression of 425 pathogen receptor and 275 phytohormone signal transduction pathway-related genes. Furthermore, plant resistance and hormonal signaling genes that were significantly altered in expression coincident with the change in root susceptibility to storage rots were identified. Further investigation into the function of these genes may ultimately elucidate methods by which storage rot resistance in sugar beet roots may be improved in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549380PMC
http://dx.doi.org/10.1038/s41598-024-78323-4DOI Listing

Publication Analysis

Top Keywords

sugar beet
20
root susceptibility
20
storage
12
storage rots
12
beet roots
12
susceptibility
9
susceptibility storage
8
defense genes
8
disease development
8
storage duration
8

Similar Publications

Despite a high sucrose accumulation in its taproot vacuoles, sugar beet (Beta vulgaris subsp. vulgaris) is sensitive to freezing. Earlier, a taproot-specific accumulation of raffinose was shown to have beneficial effects on the freezing tolerance of the plant.

View Article and Find Full Text PDF

Background: Metallo-beta lactamase resistance is one of the carbapenem resistances that worsen the world nowadays. A new variant of carbapenem-resistant has only limited reports from Africa including Ethiopia. This study aimed to determine Metallo -ß- lactamase resistance Gram-negative bacteria in Hawassa University Comprehensive Specialized Hospital January-June 2023.

View Article and Find Full Text PDF

Since the ban of neonicotinoid insecticides in the European Union, sugar beet production is threatened by outbreaks of virus yellows (VY) disease, caused by several aphid-transmitted viruses, including the polerovirus beet mild yellowing virus (BMYV). As the symptoms induced may vary depending on multiple infections and other stresses, there is an urgent need for fast screening tests to evaluate resistance/tolerance traits in sugar beet accessions. To address this issue, we exploited the virus-induced gene silencing (VIGS) system, by introducing a fragment of a gene involved in chlorophyll synthesis in the BMYV genome.

View Article and Find Full Text PDF

spp. are soil-borne pathogens that cause damping-off and root rot diseases in many plant species such as cucumber. In the current study, the effect of dried roots-stems and leaves of (Sprengel) R.

View Article and Find Full Text PDF

d-Xylitol Production from Sugar Beet Press Pulp Hydrolysate with Engineered .

Microorganisms

December 2024

Biochemical Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany.

d-Xylitol is a low-calorie and anti-cariogenic sweetener suitable for diabetic patients, making it a valuable ingredient in various health-related applications. In this study, we investigated the production of d-xylitol from l-arabinose derived from sugar beet press pulp (SBPP) hydrolysate using an engineered strain. Initial batch studies applying stirred tank bioreactors demonstrated d-xylitol production of 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!